AIMC Topic: Receptors, Antigen, T-Cell

Clear Filters Showing 31 to 40 of 52 articles

Applications of Machine and Deep Learning in Adaptive Immunity.

Annual review of chemical and biomolecular engineering
Adaptive immunity is mediated by lymphocyte B and T cells, which respectively express a vast and diverse repertoire of B cell and T cell receptors and, in conjunction with peptide antigen presentation through major histocompatibility complexes (MHCs)...

DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires.

Nature communications
Deep learning algorithms have been utilized to achieve enhanced performance in pattern-recognition tasks. The ability to learn complex patterns in data has tremendous implications in immunogenomics. T-cell receptor (TCR) sequencing assesses the diver...

Use of machine learning to identify a T cell response to SARS-CoV-2.

Cell reports. Medicine
The identification of SARS-CoV-2-specific T cell receptor (TCR) sequences is critical for understanding T cell responses to SARS-CoV-2. Accordingly, we reanalyze publicly available data from SARS-CoV-2-recovered patients who had low-severity disease ...

Prediction of Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs.

Frontiers in immunology
Current sequencing methods allow for detailed samples of T cell receptors (TCR) repertoires. To determine from a repertoire whether its host had been exposed to a target, computational tools that predict TCR-epitope binding are required. Currents too...

Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data.

Genome biology
BACKGROUND: Deep learning has emerged as a versatile approach for predicting complex biological phenomena. However, its utility for biological discovery has so far been limited, given that generic deep neural networks provide little insight into the ...

Quantitative Prediction of the Landscape of T Cell Epitope Immunogenicity in Sequence Space.

Frontiers in immunology
Immunodominant T cell epitopes preferentially targeted in multiple individuals are the critical element of successful vaccines and targeted immunotherapies. However, the underlying principles of this "convergence" of adaptive immunity among different...

Multi-positive contrastive learning-based cross-attention model for T cell receptor-antigen binding prediction.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: T cells play a vital role in the immune system by recognizing and eliminating infected or cancerous cells, thus driving adaptive immune responses. Their activation is triggered by the binding of T cell receptors (TCRs) to ep...

Leveraging Artificial Intelligence for Neoantigen Prediction.

Cancer research
Neoantigens represent a class of antigens within tumor microenvironments that arise from diverse somatic mutations and aberrations specific to tumorigenesis, holding substantial promise for advancing tumor immunotherapy. However, only a subset of neo...

Phage display enables machine learning discovery of cancer antigen-specific TCRs.

Science advances
T cells targeting epitopes in infectious diseases or cancer play a central role in spontaneous and therapy-induced immune responses. Epitope recognition is mediated by the binding of the T cell receptor (TCR), and TCRs recognizing clinically relevant...

LightCTL: lightweight contrastive TCR-pMHC specificity learning with context-aware prompt.

Briefings in bioinformatics
Identification of T cell receptor (TCR) specificities for antigens from large-scale single-cell or bulk TCR repertoire data plays a vital role in disease diagnosis and immunotherapy. In silico prediction models have emerged in recent years. However, ...