AIMC Topic: Rectal Neoplasms

Clear Filters Showing 31 to 40 of 374 articles

Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
BACKGROUND: Predicting pathological complete response (pCR) from pre or post-treatment features could be significant in improving the process of making clinical decisions and providing a more personalized treatment approach for better treatment outco...

Clinical evaluation of accelerated diffusion-weighted imaging of rectal cancer using a denoising neural network.

European journal of radiology
BACKGROUND: To evaluate the effectiveness of a deep learning denoising approach to accelerate diffusion-weighted imaging (DWI) and thus improve diagnostic accuracy and image quality in restaging rectal MRI following total neoadjuvant therapy (TNT).

Multiparametric MRI-Based Deep Learning Models for Preoperative Prediction of Tumor Deposits in Rectal Cancer and Prognostic Outcome.

Academic radiology
RATIONALE AND OBJECTIVES: To investigate the predictive value of a deep learning model based on multiparametric MRI (mpMRI) for tumor deposit (TD) in rectal cancer (RC) patients and to analyze their prognosis.

Prediction and validation of pathologic complete response for locally advanced rectal cancer under neoadjuvant chemoradiotherapy based on a novel predictor using interpretable machine learning.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
BACKGROUND: Precise evaluation of pathological complete response (pCR) is essential for determining the prognosis of patients with locally advanced rectal cancer (LARC) undergoing neoadjuvant chemoradiotherapy (NCRT) and can offer clues for the selec...

Optimized machine learning model for predicting unplanned reoperation after rectal cancer anterior resection.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
BACKGROUND: Unplanned reoperation (URO) after surgery adversely affects the quality of life and prognosis of patients undergoing anterior resection for rectal cancer. This study aims to meet the urgent need for reliable predictive tools by developing...

Deep Learning Algorithm‑Based MRI Radiomics and Pathomics for Predicting Microsatellite Instability Status in Rectal Cancer: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate multimodal deep-learning models based on clinical variables, multiparametric MRI (mp-MRI) and hematoxylin and eosin (HE) stained pathology slides for predicting microsatellite instability (MSI) status...

Predictive Study of Machine Learning-Based Multiparametric MRI Radiomics Nomogram for Perineural Invasion in Rectal Cancer: A Pilot Study.

Journal of imaging informatics in medicine
This study aimed to establish and validate the efficacy of a nomogram model, synthesized through the integration of multi-parametric magnetic resonance radiomics and clinical risk factors, for forecasting perineural invasion in rectal cancer. We retr...

The potential of an artificial intelligence for diagnosing MRI images in rectal cancer: multicenter collaborative trial.

Journal of gastroenterology
BACKGROUND: An artificial intelligence-based algorithm we developed, mrAI, satisfactorily segmented the rectal tumor, rectum, and mesorectum from MRI data of rectal cancer patients in an initial study. Herein, we aimed to validate mrAI using an indep...

An artificial intelligence-based nerve recognition model is useful as surgical support technology and as an educational tool in laparoscopic and robot-assisted rectal cancer surgery.

Surgical endoscopy
BACKGROUND: Artificial intelligence (AI) has the potential to enhance surgical practice by predicting anatomical structures within the surgical field, thereby supporting surgeons' experiences and cognitive skills. Preserving and utilising nerves as c...