AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Respiratory Distress Syndrome

Showing 1 to 10 of 62 articles

Clear Filters

Identification and experimental validation of diagnostic and prognostic genes CX3CR1, PID1 and PTGDS in sepsis and ARDS using bulk and single-cell transcriptomic analysis and machine learning.

Frontiers in immunology
BACKGROUND: Sepsis is an uncontrolled reaction to infection that causes severe organ dysfunction and is a primary cause of ARDS. Patients suffering both sepsis and ARDS have a poor prognosis and high mortality. However, the mechanisms behind their si...

Machine learning-based forecast of Helmet-CPAP therapy failure in Acute Respiratory Distress Syndrome patients.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Helmet-Continuous Positive Airway Pressure (H-CPAP) is a non-invasive respiratory support that is used for the treatment of Acute Respiratory Distress Syndrome (ARDS), a severe medical condition diagnosed when symptoms like ...

Accuracy of artificial intelligence algorithms in predicting acute respiratory distress syndrome: a systematic review and meta-analysis.

BMC medical informatics and decision making
BACKGROUND: Acute respiratory distress syndrome (ARDS) is a serious threat to human life. Hence, early and accurate diagnosis and treatment are crucial for patient survival. This meta-analysis evaluates the accuracy of artificial intelligence in the ...

RespBERT: A Multi-Site Validation of a Natural Language Processing Algorithm, of Radiology Notes to Identify Acute Respiratory Distress Syndrome (ARDS).

IEEE journal of biomedical and health informatics
Acute respiratory distress syndrome (ARDS) is a severe organ dysfunction associated with significant mortality and morbidity among critically ill patients admitted to the Intensive Care Unit (ICU). The etiology related to ARDS can be highly heterogen...

Subphenotyping prone position responders with machine learning.

Critical care (London, England)
BACKGROUND: Acute respiratory distress syndrome (ARDS) is a heterogeneous condition with varying response to prone positioning. We aimed to identify subphenotypes of ARDS patients undergoing prone positioning using machine learning and assess their a...

Screening of mitochondrial-related biomarkers connected with immune infiltration for acute respiratory distress syndrome through WGCNA and machine learning.

Medicine
Septic acute respiratory distress syndrome (ARDS) is a complex and noteworthy type, but its molecular mechanism has not been fully elucidated. The aim is to explore specific biomarkers to diagnose sepsis-induced ARDS. Gene expression data of sepsis a...

Development and Validation of an Electronic Health Record-Based, Pediatric Acute Respiratory Distress Syndrome Subphenotype Classifier Model.

Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies
OBJECTIVE: To determine if hyperinflammatory and hypoinflammatory pediatric acute respiratory distress syndrome (PARDS) subphenotypes defined using serum biomarkers can be determined solely from electronic health record (EHR) data using machine learn...

A machine learning model for predicting acute respiratory distress syndrome risk in patients with sepsis using circulating immune cell parameters: a retrospective study.

BMC infectious diseases
BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe complication associated with a high mortality rate in patients with sepsis. Early identification of patients with sepsis at high risk of developing ARDS is crucial for timely interven...

Predicting mortality and risk factors of sepsis related ARDS using machine learning models.

Scientific reports
Sepsis related acute respiratory distress syndrome (ARDS) is a common and serious disease in clinic. Accurate prediction of in-hospital mortality of patients is crucial to optimize treatment and improve prognosis under the new global definition of AR...

Predictive Modeling of Acute Respiratory Distress Syndrome Using Machine Learning: Systematic Review and Meta-Analysis.

Journal of medical Internet research
BACKGROUND: Acute respiratory distress syndrome (ARDS) is a critical condition commonly encountered in the intensive care unit (ICU), characterized by a high incidence and substantial mortality rate. Early detection and accurate prediction of ARDS ca...