AIMC Topic: Rest

Clear Filters Showing 1 to 10 of 100 articles

From resting-state functional hippocampal centrality to functional outcome: An extended neurocognitive model of psychosis.

Psychiatry research
BACKGROUND: We previously proposed a neurocognitive model of psychosis in which reduced morphometric hippocampal-cortical connectivity precedes impaired episodic memory, social cognition, negative symptoms, and functional outcome. We provided support...

Comprehensive evaluation of pipelines for classification of psychiatric disorders using multi-site resting-state fMRI datasets.

Neural networks : the official journal of the International Neural Network Society
Objective classification biomarkers that are developed using resting-state functional magnetic resonance imaging (rs-fMRI) data are expected to contribute to more effective treatment for psychiatric disorders. Unfortunately, no widely accepted biomar...

Methods for estimating resting energy expenditure in intensive care patients: A comparative study of predictive equations with machine learning and deep learning approaches.

Computer methods and programs in biomedicine
BACKGROUND: Accurate estimation of resting energy expenditure (REE) is critical for guiding nutritional therapy in critically ill patients. While indirect calorimetry (IC) is the gold standard for REE measurement, it is not routinely feasible in clin...

Diagnosis of major depressive disorder using a novel interpretable GCN model based on resting state fMRI.

Neuroscience
The diagnosis and analysis of major depressive disorder (MDD) faces some intractable challenges such as dataset limitations and clinical variability. Resting-state functional magnetic resonance imaging (Rs-fMRI) can reflect the fluctuation data of br...

A machine learning approach to identify stride characteristics predictive of musculoskeletal injury, enforced rest and retirement in Thoroughbred racehorses.

Scientific reports
Decreasing speed and stride length over successive races have been shown to be associated with musculoskeletal injury (MSI) in racehorses, demonstrating the potential for early detection of MSI through longitudinal monitoring of changes in stride cha...

Machine learning-based estimation of respiratory fluctuations in a healthy adult population using resting state BOLD fMRI and head motion parameters.

Magnetic resonance in medicine
PURPOSE: External physiological monitoring is the primary approach to measure and remove effects of low-frequency respiratory variation from BOLD-fMRI signals. However, the acquisition of clean external respiratory data during fMRI is not always poss...

Classification of mindfulness experiences from gamma-band effective connectivity: Application of machine-learning algorithms on resting, breathing, and body scan.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Practicing mindfulness is a mental process toward interoceptive awareness, achieving stress reduction and emotion regulation through brain-function alteration. Literature has shown that electroencephalography (EEG)-derived c...

PD-ARnet: a deep learning approach for Parkinson's disease diagnosis from resting-state fMRI.

Journal of neural engineering
. The clinical diagnosis of Parkinson's disease (PD) relying on medical history, clinical symptoms, and signs is subjective and lacks sensitivity. Resting-state fMRI (rs-fMRI) has been demonstrated to be an effective biomarker for diagnosing PD.This ...

Power spectral density-based resting-state EEG classification of first-episode psychosis.

Scientific reports
Historically, the analysis of stimulus-dependent time-frequency patterns has been the cornerstone of most electroencephalography (EEG) studies. The abnormal oscillations in high-frequency waves associated with psychotic disorders during sensory and c...

Convolutional neural networks can detect orthostatic hypotension in Parkinson's disease using resting-state functional near-infrared spectroscopy data.

Journal of biophotonics
Neurological disorders such as Parkinson's disease (PD) often adversely affect the vascular system, leading to alterations in blood flow patterns. Functional near-infrared spectroscopy (fNIRS) is used to monitor hemodynamic changes via signal measure...