Translational vision science & technology
Mar 30, 2020
PURPOSE: To develop an artificial intelligence (AI)-based structure-function (SF) map relating retinal nerve fiber layer (RNFL) damage on spectral domain optical coherence tomography (SDOCT) to functional loss on standard automated perimetry (SAP).
BACKGROUND/AIMS: To assess the performance of a deep learning classifier for differentiation of glaucomatous optic neuropathy (GON) from compressive optic neuropathy (CON) based on ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fibre l...
We developed a hybrid deep learning model (HDLM) algorithm that quantitatively predicts macular ganglion cell-inner plexiform layer (mGCIPL) thickness from red-free retinal nerve fiber layer photographs (RNFLPs). A total of 789 pairs of RNFLPs and sp...
Neural networks : the official journal of the International Neural Network Society
Feb 8, 2020
Neural coding is one of the central questions in systems neuroscience for understanding how the brain processes stimulus from the environment, moreover, it is also a cornerstone for designing algorithms of brain-machine interface, where decoding inco...
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
Jan 27, 2020
PURPOSE: To develop a deep learning approach based on deep residual neural network (ResNet101) for the automated detection of glaucomatous optic neuropathy (GON) using color fundus images, understand the process by which the model makes predictions, ...
This study describes a segmentation-free deep learning (DL) algorithm for measuring retinal nerve fibre layer (RNFL) thickness on spectral-domain optical coherence tomography (SDOCT). The study included 25,285 B-scans from 1,338 eyes of 706 subjects....
PURPOSE: To investigate whether processing visual field (VF) measurements using a variational autoencoder (VAE) improves the structure-function relationship in glaucoma.
PURPOSE: To assess the performance of machine learning classifiers for prediction of progression of normal-tension glaucoma (NTG) in young myopic patients.
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
Dec 7, 2019
PURPOSE: To develop a deep learning (DL) model for automated detection of glaucoma and to compare diagnostic capability against hand-craft features (HCFs) based on spectral domain optical coherence tomography (SD-OCT) peripapillary retinal nerve fibe...
PURPOSE: To compare the diagnostic performance of human gradings vs predictions provided by a machine-to-machine (M2M) deep learning (DL) algorithm trained to quantify retinal nerve fiber layer (RNFL) damage on fundus photographs.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.