AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Risk Factors

Showing 361 to 370 of 2301 articles

Clear Filters

Machine learning based prediction model for bile leak following hepatectomy for liver cancer.

HPB : the official journal of the International Hepato Pancreato Biliary Association
OBJECTIVE: We sought to develop a machine learning (ML) preoperative model to predict bile leak following hepatectomy for primary and secondary liver cancer.

Machine learning algorithms that predict the risk of prostate cancer based on metabolic syndrome and sociodemographic characteristics: a prospective cohort study.

BMC public health
BACKGROUND: Given the rapid increase in the prevalence of prostate cancer (PCa), identifying its risk factors and developing suitable risk prediction models has important implications for public health. We used machine learning (ML) approach to scree...

Using artificial intelligence to predict post-operative outcomes in congenital heart surgeries: a systematic review.

BMC cardiovascular disorders
INTRODUCTION: Congenital heart disease (CHD) represents the most common group of congenital anomalies, constitutes a significant contributor to the burden of non-communicable diseases, highlighting the critical need for improved risk assessment tools...

Development and validation of machine learning models for predicting venous thromboembolism in colorectal cancer patients: A cohort study in China.

International journal of medical informatics
BACKGROUND: With advancements in healthcare, traditional VTE risk assessment tools are increasingly insufficient to meet the demands of high-quality care, underscoring the need for innovative and specialized assessment methods.

Predicting Early recurrence of atrial fibrilation post-catheter ablation using machine learning techniques.

BMC cardiovascular disorders
BACKGROUND: Catheter ablation is a common treatment for atrial fibrillation (AF), but recurrence rates remain variable. Predicting the success of catheter ablation is crucial for patient selection and management. This research seeks to create a machi...

Textbook outcome in liver surgery for intrahepatic cholangiocarcinoma: defining predictors of an optimal postoperative course using machine learning.

HPB : the official journal of the International Hepato Pancreato Biliary Association
BACKGROUND: We sought to define textbook outcome in liver surgery (TOLS) for intrahepatic cholangiocarcinoma (ICC) by considering the implications of perioperative outcomes on overall survival (OS).

Evaluation of a machine learning-based metabolic marker for coronary artery disease in the UK Biobank.

Atherosclerosis
BACKGROUND AND AIMS: An in silico quantitative score of coronary artery disease (ISCAD), built using machine learning and clinical data from electronic health records, has been shown to result in gradations of risk of subclinical atherosclerosis, cor...

Prediction of new-onset atrial fibrillation in patients with hypertrophic cardiomyopathy using machine learning.

European journal of heart failure
AIMS: Atrial fibrillation (AF) is the most common sustained arrhythmia among patients with hypertrophic cardiomyopathy (HCM), leading to increased symptom burden and risk of thromboembolism. The HCM-AF score was developed to predict new-onset AF in p...