IMPORTANCE: Machine-learning algorithms offer better predictive accuracy than traditional prognostic models but are too complex and opaque for clinical use.
Amyloid-β(Aβ) PET positivity in patients with suspected cerebral amyloid angiopathy (CAA) MRI markers is predictive of a worse cognitive trajectory, and it provides insights into the underlying vascular pathology (CAA vs. hypertensive angiopathy) to ...
BACKGROUND: As one of the most common post-transcriptional modifications (PTCM) in RNA, 5-cytosine-methylation plays important roles in many biological functions such as RNA metabolism and cell fate decision. Through accurate identification of 5-meth...
Computer methods and programs in biomedicine
Oct 28, 2020
BACKGROUND AND OBJECTIVE: Sepsis occurs in response to an infection in the body and can progress to a fatal stage. Detection and monitoring of sepsis require multi-step analysis, which is time-consuming, costly and requires medically trained personne...
Computer methods and programs in biomedicine
Oct 25, 2020
BACKGROUND AND OBJECTIVES: Despite recent advances in artificial intelligence for medical images, the development of a robust deep learning model for identifying malignancy on pathology slides has been limited by problems related to substantial inter...
OBJECTIVE: The mitotic count of gastrointestinal stromal tumors (GIST) is closely associated with the risk of planting and metastasis. The purpose of this study was to develop a predictive model for the mitotic index of local primary GIST, based on d...
BACKGROUND: Central lymph node metastasis (CLNM) occurs frequently in patients with papillary thyroid cancer (PTC), but performing prophylactic central lymph node dissection is still controversial. There are no reliable models for predicting CLNM. Th...
We investigated the ability of machine-learning classifiers on radiomics from pre-treatment multiparametric magnetic resonance imaging (MRI) to accurately predict human papillomavirus (HPV) status in patients with oropharyngeal squamous cell carcinom...
BACKGROUND AND AIMS: Recent advances in deep convolutional neural networks (CNNs) have led to remarkable results in digestive endoscopy. In this study, we aimed to develop CNN-based models for the differential diagnosis of benign esophageal protruded...
Despite the evidence of improved patients' outcome, fractional flow reserve (FFR) is underused in current everyday practice. We aimed to evaluate the feasibility of a novel automated artificial intelligence angiography-based FFR software (AutocathFFR...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.