AIMC Topic: Saccharomyces cerevisiae

Clear Filters Showing 61 to 70 of 172 articles

Optimal tuning of weighted kNN- and diffusion-based methods for denoising single cell genomics data.

PLoS computational biology
The analysis of single-cell genomics data presents several statistical challenges, and extensive efforts have been made to produce methods for the analysis of this data that impute missing values, address sampling issues and quantify and correct for ...

Graph embeddings on gene ontology annotations for protein-protein interaction prediction.

BMC bioinformatics
BACKGROUND: Protein-protein interaction (PPI) prediction is an important task towards the understanding of many bioinformatics functions and applications, such as predicting protein functions, gene-disease associations and disease-drug associations. ...

Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure.

Nature communications
Understanding the genetic regulatory code governing gene expression is an important challenge in molecular biology. However, how individual coding and non-coding regions of the gene regulatory structure interact and contribute to mRNA expression leve...

Identifying longevity associated genes by integrating gene expression and curated annotations.

PLoS computational biology
Aging is a complex process with poorly understood genetic mechanisms. Recent studies have sought to classify genes as pro-longevity or anti-longevity using a variety of machine learning algorithms. However, it is not clear which types of features are...

A convolutional neural network segments yeast microscopy images with high accuracy.

Nature communications
The identification of cell borders ('segmentation') in microscopy images constitutes a bottleneck for large-scale experiments. For the model organism Saccharomyces cerevisiae, current segmentation methods face challenges when cells bud, crowd, or exh...

Hybrid neural network modeling and particle swarm optimization for improved ethanol production from cashew apple juice.

Bioprocess and biosystems engineering
A hybrid neural model (HNM) and particle swarm optimization (PSO) was used to optimize ethanol production by a flocculating yeast, grown on cashew apple juice. HNM was obtained by combining artificial neural network (ANN), which predicted reaction sp...

A machine learning Automated Recommendation Tool for synthetic biology.

Nature communications
Synthetic biology allows us to bioengineer cells to synthesize novel valuable molecules such as renewable biofuels or anticancer drugs. However, traditional synthetic biology approaches involve ad-hoc engineering practices, which lead to long develop...

Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism.

Nature communications
Through advanced mechanistic modeling and the generation of large high-quality datasets, machine learning is becoming an integral part of understanding and engineering living systems. Here we show that mechanistic and machine learning models can be c...

A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes.

Nature communications
Chemoproteomics is a key technology to characterize the mode of action of drugs, as it directly identifies the protein targets of bioactive compounds and aids in the development of optimized small-molecule compounds. Current approaches cannot identif...

A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth.

Proceedings of the National Academy of Sciences of the United States of America
Metabolic modeling and machine learning are key components in the emerging next generation of systems and synthetic biology tools, targeting the genotype-phenotype-environment relationship. Rather than being used in isolation, it is becoming clear th...