AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Schizophrenia

Showing 151 to 160 of 270 articles

Clear Filters

Identifying schizophrenia subgroups using clustering and supervised learning.

Schizophrenia research
Schizophrenia has a 1% incidence rate world-wide and those diagnosed present with positive (e.g. hallucinations, delusions), negative (e.g. apathy, asociality), and cognitive symptoms. However, both symptom burden and associated brain alterations are...

Characterizing functional regional homogeneity (ReHo) as a B-SNIP psychosis biomarker using traditional and machine learning approaches.

Schizophrenia research
BACKGROUND: Recently, a biologically-driven psychosis classification (B-SNIP Biotypes) was derived using brain-based cognitive and electrophysiological markers. Here, we characterized a local functional-connectivity measure, regional homogeneity (ReH...

Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data.

EBioMedicine
BACKGROUND: Current fMRI-based classification approaches mostly use functional connectivity or spatial maps as input, instead of exploring the dynamic time courses directly, which does not leverage the full temporal information.

Machine learning and big data: Implications for disease modeling and therapeutic discovery in psychiatry.

Artificial intelligence in medicine
INTRODUCTION: Machine learning capability holds promise to inform disease models, the discovery and development of novel disease modifying therapeutics and prevention strategies in psychiatry. Herein, we provide an introduction on how machine learnin...

Validation of oxidative stress assay for schizophrenia.

Schizophrenia research
Accumulating evidence implicates oxidative stress in a range of diseases, yet no objective measurement has emerged that characterizes the global nature of oxidative stress. Previously, we reported a measurement that employs the moderately strong oxid...

Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization.

Schizophrenia research
BACKGROUND: The recent deep learning-based studies on the classification of schizophrenia (SCZ) using MRI data rely on manual extraction of feature vector, which destroys the 3D structure of MRI data. In order to both identify SCZ and find relevant b...

Identification of the gene signature reflecting schizophrenia's etiology by constructing artificial intelligence-based method of enhanced reproducibility.

CNS neuroscience & therapeutics
AIMS: As one of the most fundamental questions in modern science, "what causes schizophrenia (SZ)" remains a profound mystery due to the absence of objective gene markers. The reproducibility of the gene signatures identified by independent studies i...

3D-CNN based discrimination of schizophrenia using resting-state fMRI.

Artificial intelligence in medicine
MOTIVATION: This study reports a framework to discriminate patients with schizophrenia and normal healthy control subjects, based on magnetic resonance imaging (MRI) of the brain. Resting-state functional MRI data from a total of 144 subjects (72 pat...

Machine learning identifies unaffected first-degree relatives with functional network patterns and cognitive impairment similar to those of schizophrenia patients.

Human brain mapping
Schizophrenia (SCZ) patients and their unaffected first-degree relatives (FDRs) share similar functional neuroanatomy. However, it remains largely unknown to what extent unaffected FDRs with functional neuroanatomy patterns similar to patients can be...

Analyzing DNA methylation patterns in subjects diagnosed with schizophrenia using machine learning methods.

Journal of psychiatric research
Schizophrenia is a common mental disorder with high heritability. It is genetically complex and to date more than a hundred risk loci have been identified. Association of environmental factors and schizophrenia has also been reported, while epigeneti...