AIMC Topic: Seizures

Clear Filters Showing 31 to 40 of 329 articles

RVDLAHA: An RISC-V DLA Hardware Architecture for On-Device Real-Time Seizure Detection and Personalization in Wearable Applications.

IEEE transactions on biomedical circuits and systems
Epilepsy is a globally distributed chronic neurological disorder that may pose a threat to life without warning. Therefore, the use of wearable devices for real-time detection and treatment of epilepsy is crucial. Additionally, personalizing disease ...

EEG Temporal-Spatial Feature Learning for Automated Selection of Stimulus Parameters in Electroconvulsive Therapy.

IEEE journal of biomedical and health informatics
The risk of adverse effects in Electroconvulsive Therapy (ECT), such as cognitive impairment, can be high if an excessive stimulus is applied to induce the necessary generalized seizure (GS); Conversely, inadequate stimulus results in failure. Recent...

Deep Multiview Module Adaption Transfer Network for Subject-Specific EEG Recognition.

IEEE transactions on neural networks and learning systems
Transfer learning is one of the popular methods to solve the problem of insufficient data in subject-specific electroencephalogram (EEG) recognition tasks. However, most existing approaches ignore the difference between subjects and transfer the same...

A multi-domain feature fusion epilepsy seizure detection method based on spike matching and PLV functional networks.

Journal of neural engineering
The identification of spikes, as a typical characteristic wave of epilepsy, is crucial for diagnosing and locating the epileptogenic region. The traditional seizure detection methods lack spike features and have low sample richness. This paper propos...

Machine learning enables high-throughput, low-replicate screening for novel anti-seizure targets and compounds using combined movement and calcium fluorescence in larval zebrafish.

European journal of pharmacology
Identifying new anti-seizure medications (ASMs) is difficult due to limitations in animal-based assays. Zebrafish (Danio rerio) serve as a model for chemical and genetic seizures, but current methods for detecting anti-seizure responses are limited b...

Development and applications of a machine learning model for an in-depth analysis of pentylenetetrazol-induced seizure-like behaviors in adult zebrafish.

Neuroscience
Epilepsy, a neurological disorder causing recurring seizures, is often studied in zebrafish by exposing animals to pentylenetetrazol (PTZ), which induces clonic- and tonic-like behaviors. While adult zebrafish seizure-like behaviors are well characte...

Utilizing machine learning techniques for EEG assessment in the diagnosis of epileptic seizures in the brain: A systematic review and meta-analysis.

Seizure
PURPOSE: Advancements in Machine Learning (ML) techniques have revolutionized diagnosing and monitoring epileptic seizures using Electroencephalogram (EEG) signals. This analysis aims to determine the effectiveness of ML techniques in recognizing pat...

Using artificial intelligence to optimize anti-seizure treatment and EEG-guided decisions in severe brain injury.

Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics
Electroencephalography (EEG) is invaluable in the management of acute neurological emergencies. Characteristic EEG changes have been identified in diverse neurologic conditions including stroke, trauma, and anoxia, and the increased utilization of co...

Deep Clustering for Epileptic Seizure Detection.

IEEE transactions on bio-medical engineering
UNLABELLED: Epilepsy is a neurological disorder characterized by recurrent epileptic seizures, which are often unpredictable and increase mortality and morbidity risks.

Interpretable Multi-Branch Architecture for Spatiotemporal Neural Networks and Its Application in Seizure Prediction.

IEEE journal of biomedical and health informatics
Currently, spatiotemporal convolutional neural networks (CNNs) for electroencephalogram (EEG) signals have emerged as promising tools for seizure prediction (SP), which explore the spatiotemporal biomarkers in an epileptic brain. Generally, these CNN...