AIMC Topic: Supervised Machine Learning

Clear Filters Showing 51 to 60 of 1663 articles

Clinically applicable semi-supervised learning framework for multiple organs at risk and tumor delineation in lung cancer brachytherapy.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: The generalization ability of deep learning-based automatic segmentation techniques for lung cancer in practical clinical applications remains under-validated. We reported an investigation that validated a robust semi-supervised conditional ...

A segment anything model-guided and match-based semi-supervised segmentation framework for medical imaging.

Medical physics
BACKGROUND: Semi-supervised segmentation leverages sparse annotation information to learn rich representations from combined labeled and label-less data for segmentation tasks. The Match-based framework, by using the consistency constraint of segment...

Role of eccentricity based topological descriptors to predict anti-HIV drugs attributes with supervised machine learning algorithms.

Computers in biology and medicine
Chemical graphs are mathematical representations of molecular structures, where atoms are represented as vertices, while chemical bonds are depicted as edges of a graph. The chemical graphs are widely used in cheminformatics to analyze molecular prop...

The optimization and impact of public sports service quality based on the supervised learning model and artificial intelligence.

Scientific reports
Aiming at the optimization of public sports service quality, this study analyzes the public sports service data deeply by constructing a supervised learning model. Firstly, the theoretical framework of this study is established. Secondly, the technic...

Flip Learning: Weakly supervised erase to segment nodules in breast ultrasound.

Medical image analysis
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user...

Predictive reward-prediction errors of climbing fiber inputs integrate modular reinforcement learning with supervised learning.

PLoS computational biology
Although the cerebellum is typically associated with supervised learning algorithms, it also exhibits extensive involvement in reward processing. In this study, we investigated the cerebellum's role in executing reinforcement learning algorithms, wit...

Masked Deformation Modeling for Volumetric Brain MRI Self-Supervised Pre-Training.

IEEE transactions on medical imaging
Self-supervised learning (SSL) has been proposed to alleviate neural networks' reliance on annotated data and to improve downstream tasks' performance, which has obtained substantial success in several volumetric medical image segmentation tasks. How...

Effective Semi-Supervised Medical Image Segmentation With Probabilistic Representations and Prototype Learning.

IEEE transactions on medical imaging
Label scarcity, class imbalance and data uncertainty are three primary challenges that are commonly encountered in the semi-supervised medical image segmentation. In this work, we focus on the data uncertainty issue that is overlooked by previous lit...

FedLPPA: Learning Personalized Prompt and Aggregation for Federated Weakly-Supervised Medical Image Segmentation.

IEEE transactions on medical imaging
Federated learning (FL) effectively mitigates the data silo challenge brought about by policies and privacy concerns, implicitly harnessing more data for deep model training. However, traditional centralized FL models grapple with diverse multi-cente...