AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Time-Lapse Imaging

Showing 31 to 40 of 73 articles

Clear Filters

Rapid, label-free classification of tumor-reactive T cell killing with quantitative phase microscopy and machine learning.

Scientific reports
Quantitative phase microscopy (QPM) enables studies of living biological systems without exogenous labels. To increase the utility of QPM, machine-learning methods have been adapted to extract additional information from the quantitative phase data. ...

Time-Lapse Systems: A Comprehensive Analysis on Effectiveness.

Seminars in reproductive medicine
Time-lapse systems have quickly become a common feature of in vitro fertilization laboratories all over the world. Since being introduced over a decade ago, the alleged benefits of time-lapse technology have continued to grow, from undisturbed cultur...

Unsupervised discovery of dynamic cell phenotypic states from transmitted light movies.

PLoS computational biology
Identification of cell phenotypic states within heterogeneous populations, along with elucidation of their switching dynamics, is a central challenge in modern biology. Conventional single-cell analysis methods typically provide only indirect, static...

An artificial intelligence model (euploid prediction algorithm) can predict embryo ploidy status based on time-lapse data.

Reproductive biology and endocrinology : RB&E
BACKGROUND: For the association between time-lapse technology (TLT) and embryo ploidy status, there has not yet been fully understood. TLT has the characteristics of large amount of data and non-invasiveness. If we want to accurately predict embryo p...

Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences.

PloS one
Assessing and selecting the most viable embryos for transfer is an essential part of in vitro fertilization (IVF). In recent years, several approaches have been made to improve and automate the procedure using artificial intelligence (AI) and deep le...

DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics.

PLoS computational biology
Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within ti...

Using deep learning to predict the outcome of live birth from more than 10,000 embryo data.

BMC pregnancy and childbirth
BACKGROUND: Recently, the combination of deep learning and time-lapse imaging provides an objective, standard and scientific solution for embryo selection. However, the reported studies were based on blastocyst formation or clinical pregnancy as the ...

Predicting Embryo Viability Based on Self-Supervised Alignment of Time-Lapse Videos.

IEEE transactions on medical imaging
With self-supervised learning, both labeled and unlabeled data can be used for representation learning and model pretraining. This is particularly relevant when automating the selection of a patient's fertilized eggs (embryos) during a fertility trea...

3D time-lapse imaging of a mouse embryo using intensity diffraction tomography embedded inside a deep learning framework.

Applied optics
We present a compact 3D diffractive microscope that can be inserted directly in a cell incubator for long-term observation of developing organisms. Our setup is particularly simple and robust, since it does not include any moving parts and is compati...

Machine learning phenomics (MLP) combining deep learning with time-lapse-microscopy for monitoring colorectal adenocarcinoma cells gene expression and drug-response.

Scientific reports
High-throughput phenotyping is becoming increasingly available thanks to analytical and bioinformatics approaches that enable the use of very high-dimensional data and to the availability of dynamic models that link phenomena across levels: from gene...