IEEE transactions on neural networks and learning systems
Oct 29, 2024
At present, multimodal medical image fusion technology has become an essential means for researchers and doctors to predict diseases and study pathology. Nevertheless, how to reserve more unique features from different modal source images on the prem...
We aimed to evaluate the image quality and diagnostic performance of chronic lung allograft dysfunction (CLAD) with lung ventilation single-photon emission computed tomography (SPECT) images acquired briefly using a convolutional neural network (CNN)...
This review explores the potential applications of Large Language Models (LLMs) in nuclear medicine, especially nuclear medicine examinations such as PET and SPECT, reviewing recent advancements in both fields. Despite the rapid adoption of LLMs in v...
We develop a machine learning (ML) model using electrocardiography (ECG) to predict myocardial blood flow reserve (MFR) and assess its prognostic value for major adverse cardiovascular events (MACEs). Using 3,639 ECG-positron emission tomography (PET...
BACKGROUND: To evaluate the clinical performance of two deep learning methods, one utilizing real clinical pairs and the other utilizing simulated datasets, in enhancing image quality for two-dimensional (2D) fast whole-body scintigraphy (WBS).
BACKGROUND: Deep learning is the primary method for conducting automated analysis of SPECT bone scintigrams. The lack of available large-scale data significantly hinders the development of well-performing deep learning models, as the performance of a...
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
Sep 3, 2024
We propose strongly unrealistic data augmentation to improve the robustness of convolutional neural networks (CNNs) for automatic classification of dopamine transporter SPECT against the variability between sites and between cameras. A CNN was train...
BACKGROUND: Stress myocardial perfusion single-photon emission computed tomography (SPECT) imaging (MPI) has been used to diagnose and predict the prognoses of patients with coronary artery disease (CAD). An ongoing multicenter collaboration establis...
RATIONALE AND OBJECTIVES: This study investigated the use of deep learning-generated virtual positron emission tomography (PET)-like gated single-photon emission tomography (SPECT) for assessing myocardial strain, overcoming limitations of convention...
OBJECTIVE: To develop and validate a machine learning (ML) model based on high-frequency ultrasound (HFUS) images with the aim to identify the functional status of parathyroid glands (PTGs) in secondary hyper-parathyroidism (SHPT) patients.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.