AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Tomography, Emission-Computed, Single-Photon

Showing 11 to 20 of 154 articles

Clear Filters

Multimodal Data-Driven Segmentation of Bone Metastasis Lesions in SPECT Bone Scans Using Deep Learning.

Current medical imaging
BACKGROUND: Patients with malignant tumors often develop bone metastases. SPECT bone scintigraphy is an effective tool for surveying bone metastases due to its high sensitivity, low-cost equipment, and radiopharmaceutical. However, the low spatial re...

Machine learning for predicting cognitive decline within five years in Parkinson's disease: Comparing cognitive assessment scales with DAT SPECT and clinical biomarkers.

PloS one
OBJECTIVE: Parkinson's disease (PD) is an age-related neurodegenerative condition characterized mostly by motor symptoms. Although a wide range of non-motor symptoms (NMS) are frequently experienced by PD patients. One of the important and common NMS...

Development and Validation of an Explainable Machine Learning Model for Identification of Hyper-Functioning Parathyroid Glands from High-Frequency Ultrasonographic Images.

Ultrasound in medicine & biology
OBJECTIVE: To develop and validate a machine learning (ML) model based on high-frequency ultrasound (HFUS) images with the aim to identify the functional status of parathyroid glands (PTGs) in secondary hyper-parathyroidism (SHPT) patients.

Radiomics based on multiple machine learning methods for diagnosing early bone metastases not visible on CT images.

Skeletal radiology
OBJECTIVES: This study utilizes [Tc]-methylene diphosphate (MDP) single photon emission computed tomography (SPECT) images as a reference standard to evaluate whether the integration of radiomics features from computed tomography (CT) and machine lea...

A novel algorithm developed using machine learning and a J-ACCESS database can estimate defect scores from myocardial perfusion single-photon emission tomography images.

Annals of nuclear medicine
BACKGROUND: Stress myocardial perfusion single-photon emission computed tomography (SPECT) imaging (MPI) has been used to diagnose and predict the prognoses of patients with coronary artery disease (CAD). An ongoing multicenter collaboration establis...

Gated SPECT-Derived Myocardial Strain Estimated From Deep-Learning Image Translation Validated From N-13 Ammonia PET.

Academic radiology
RATIONALE AND OBJECTIVES: This study investigated the use of deep learning-generated virtual positron emission tomography (PET)-like gated single-photon emission tomography (SPECT) for assessing myocardial strain, overcoming limitations of convention...

Generative AI and large language models in nuclear medicine: current status and future prospects.

Annals of nuclear medicine
This review explores the potential applications of Large Language Models (LLMs) in nuclear medicine, especially nuclear medicine examinations such as PET and SPECT, reviewing recent advancements in both fields. Despite the rapid adoption of LLMs in v...

Clinical performance of deep learning-enhanced ultrafast whole-body scintigraphy in patients with suspected malignancy.

BMC medical imaging
BACKGROUND: To evaluate the clinical performance of two deep learning methods, one utilizing real clinical pairs and the other utilizing simulated datasets, in enhancing image quality for two-dimensional (2D) fast whole-body scintigraphy (WBS).

Bone metastasis scintigram generation using generative adversarial learning with multi-receptive field learning and two-stage training.

Medical physics
BACKGROUND: Deep learning is the primary method for conducting automated analysis of SPECT bone scintigrams. The lack of available large-scale data significantly hinders the development of well-performing deep learning models, as the performance of a...

Unrealistic Data Augmentation Improves the Robustness of Deep Learning-Based Classification of Dopamine Transporter SPECT Against Variability Between Sites and Between Cameras.

Journal of nuclear medicine : official publication, Society of Nuclear Medicine
We propose strongly unrealistic data augmentation to improve the robustness of convolutional neural networks (CNNs) for automatic classification of dopamine transporter SPECT against the variability between sites and between cameras. A CNN was train...