PURPOSE: This study is aimed to develop and validate a machine learning model, which combined radiomics and clinical characteristics to predicting the definitive chemoradiotherapy (dCRT) treatment response in esophageal squamous cell carcinoma (ESCC)...
Prediction of severe disease (SVD) in patients with coronavirus disease (COVID-19) pneumonia at an early stage could allow for more appropriate triage and improve patient prognosis. Moreover, the visualization of the topological properties of COVID-1...
The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical-radiomic models using preoperative CT images to predict the mali...
BACKGROUND: Chronic rhinosinusitis (CRS) is diagnosed with symptoms and objective endoscopy or computed tomography (CT). The Lund-Mackay score (LMS) is often used to determine the radiologic severity of CRS and make clinical decisions. This proof-of-...
Neuroblastoma presents a wide variety of clinical phenotypes, demonstrating different levels of benignity and malignancy among its subtypes. Early diagnosis is essential for effective patient management. Computed tomography (CT) serves as a significa...
The most common causes of spine fractures, or vertebral column fractures (VCF), are traumas like falls, injuries from sports, or accidents. CT scans are affordable and effective at detecting VCF types in an accurate manner. VCF type identification in...
OBJECTIVE: This study aims to investigate the impact of adaptive statistical iterative reconstruction-Veo (ASIR-V) and deep learning image reconstruction (DLIR) algorithms on the quantification of pericoronary adipose tissue (PCAT) and epicardial adi...
Journal of applied clinical medical physics
Apr 23, 2025
BACKGROUND: Tumor segmentation is crucial for lung disease diagnosis and treatment. Most existing deep learning-based automatic segmentation methods rely on manually annotated data for network training.
The international journal of cardiovascular imaging
Apr 23, 2025
We hypothesized that deep learning-based post hoc denoising could improve the quality of cardiac CT for the 3D volume-rendered (VR) imaging of mitral valve (MV) prolapse. We aimed to evaluate the quality of denoised 3D VR images for visualizing MV pr...
Unsupervised deformable multimodal medical image registration often confronts complex scenarios, which include intermodality domain gaps, multi-organ anatomical heterogeneity, and physiological motion variability. These factors introduce substantial ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.