AIMC Topic: Tomography, X-Ray Computed

Clear Filters Showing 711 to 720 of 4963 articles

Quantitative analysis of imaging characteristics in lung adenocarcinoma in situ using artificial intelligence.

Thoracic cancer
BACKGROUND: With the rising incidence of pulmonary nodules (PNs), lung adenocarcinoma in situ (AIS) is a critical early stage of lung cancer, necessitating accurate diagnosis for early intervention. This study applies artificial intelligence (AI) for...

Beyond MELD Score: Association of Machine Learning-derived CT Body Composition with 90-Day Mortality Post Transjugular Intrahepatic Portosystemic Shunt Placement.

Cardiovascular and interventional radiology
PURPOSE: To determine the association of machine learning-derived CT body composition and 90-day mortality after transjugular intrahepatic portosystemic shunt (TIPS) and to assess its predictive performance as a complement to Model for End-Stage Live...

GeSeNet: A General Semantic-Guided Network With Couple Mask Ensemble for Medical Image Fusion.

IEEE transactions on neural networks and learning systems
At present, multimodal medical image fusion technology has become an essential means for researchers and doctors to predict diseases and study pathology. Nevertheless, how to reserve more unique features from different modal source images on the prem...

Deep Learning Using One-stop-shop CT Scan to Predict Hemorrhagic Transformation in Stroke Patients Undergoing Reperfusion Therapy: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: Hemorrhagic transformation (HT) is one of the most serious complications in patients with acute ischemic stroke (AIS) following reperfusion therapy. The purpose of this study is to develop and validate deep learning (DL) mod...

Anomaly detection scheme for lung CT images using vector quantized variational auto-encoder with support vector data description.

Radiological physics and technology
This study aims to develop an anomaly-detection scheme for lesions in CT images. Our database consists of lung CT images obtained from 1500 examinees. It includes 1200 normal and 300 abnormal cases. In this study, SVDD (Support Vector Data Descriptio...

Aggressiveness classification of clear cell renal cell carcinoma using registration-independent radiology-pathology correlation learning.

Medical physics
BACKGROUND: Renal cell carcinoma (RCC) is a common cancer that varies in clinical behavior. Clear cell RCC (ccRCC) is the most common RCC subtype, with both aggressive and indolent manifestations. Indolent ccRCC is often low-grade without necrosis an...

Significance of Image Reconstruction Parameters for Future Lung Cancer Risk Prediction Using Low-Dose Chest Computed Tomography and the Open-Access Sybil Algorithm.

Investigative radiology
PURPOSE: Sybil is a validated publicly available deep learning-based algorithm that can accurately predict lung cancer risk from a single low-dose computed tomography (LDCT) scan. We aimed to study the effect of image reconstruction parameters and CT...

Lung nodule classification using radiomics model trained on degraded SDCT images.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Low-dose computed tomography (LDCT) screening has shown promise in reducing lung cancer mortality; however, it suffers from high false positive rates and a scarcity of available annotated datasets. To overcome these challeng...