PURPOSE: Global indices of standard automated perimerty are insensitive to localized losses, while point-wise indices are sensitive but highly variable. Region-wise indices sit in between. This study introduces a machine learning-based index for glau...
PURPOSE: To test the hypothesis that contact lens sensor (CLS)-based 24-hour profiles of ocular volume changes contain information complementary to intraocular pressure (IOP) to discriminate between primary open-angle glaucoma (POAG) and healthy (H) ...
PURPOSE: Previous approaches using deep learning (DL) algorithms to classify glaucomatous damage on fundus photographs have been limited by the requirement for human labeling of a reference training set. We propose a new approach using quantitative s...
BACKGROUND/AIMS: To compare intraocular pressure (IOP) measurements using a prototype smartphone tonometer with other tonometers used in clinical practice.
IMPORTANCE: Techniques that properly identify patients in whom ocular hypertension (OHTN) is likely to progress to open-angle glaucoma can assist clinicians with deciding on the frequency of monitoring and the potential benefit of early treatment.
PURPOSE: To develop an objective and automated method for measuring intraocular pressure using deep learning and fixed-force Goldmann applanation tonometry (GAT) techniques.
The purpose of this study was to develop an automatic deep learning-based approach and corresponding free, open-source software to perform segmentation of the Schlemm's canal (SC) lumen in optical coherence tomography (OCT) scans of living mouse eyes...
SIGNIFICANCE: Glaucoma, a leading cause of global blindness, disproportionately affects low-income regions due to expensive diagnostic methods. Affordable intraocular pressure (IOP) measurement is crucial for early detection, especially in low- and m...
BACKGROUND/AIMS: To assess the performance of deep-learning (DL) models for prediction of conversion to normal-tension glaucoma (NTG) in normotensive glaucoma suspect (GS) patients.
Medical science monitor : international medical journal of experimental and clinical research
39623707
BACKGROUND Predicting 24-hour intraocular pressure (IOP) fluctuations is crucial for enhancing glaucoma management. Traditional methods of measuring 24-hour IOP fluctuations are complex and present certain limitations. The present study leverages mac...