AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Tumor Suppressor Proteins

Showing 1 to 10 of 30 articles

Clear Filters

A quantitative characterization of the heterogeneous response of glioblastoma U-87 MG cell line to temozolomide.

Scientific reports
Most cancers are genetically and phenotypically heterogeneous. This includes subpopulations of cells with different levels of sensitivity to chemotherapy, which may lead to treatment failure as the more resistant cells can survive drug treatment and ...

A Comparison of Three Different Deep Learning-Based Models to Predict the MGMT Promoter Methylation Status in Glioblastoma Using Brain MRI.

Journal of digital imaging
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. The standard treatment for GBM consists of surgical resection followed by concurrent chemoradiotherapy and adjuvant temozolomide. O-6-methylguanine-DNA methyltransferase (...

MGMT promoter methylation status prediction using MRI scans? An extensive experimental evaluation of deep learning models.

Medical image analysis
The number of studies on deep learning for medical diagnosis is expanding, and these systems are often claimed to outperform clinicians. However, only a few systems have shown medical efficacy. From this perspective, we examine a wide range of deep l...

AI tool for predicting MGMT methylation in glioblastoma for clinical decision support in resource limited settings.

Scientific reports
Glioblastoma is an aggressive brain cancer with a poor prognosis. The O6-methylguanine-DNA methyltransferase (MGMT) gene methylation status is crucial for treatment stratification, yet economic constraints often limit access. This study aims to devel...

Assessment of MGMT promoter methylation status in glioblastoma using deep learning features from multi-sequence MRI of intratumoral and peritumoral regions.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: This study aims to evaluate the effectiveness of deep learning features derived from multi-sequence magnetic resonance imaging (MRI) in determining the O-methylguanine-DNA methyltransferase (MGMT) promoter methylation status among glioblas...

Deep learning classification of MGMT status of glioblastomas using multiparametric MRI with a novel domain knowledge augmented mask fusion approach.

Scientific reports
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both M...

Predictive modeling with linear machine learning can estimate glioblastoma survival in months based solely on MGMT-methylation status, age and sex.

Acta neurochirurgica
PURPOSE: Machine Learning (ML) has become an essential tool for analyzing biomedical data, facilitating the prediction of treatment outcomes and patient survival. However, the effectiveness of ML models heavily relies on both the choice of algorithms...

Discovering Novel Biomarkers and Potential Therapeutic Targets of Amyotrophic Lateral Sclerosis Through Integrated Machine Learning and Gene Expression Profiling.

Journal of molecular neuroscience : MN
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that has multiple factors that make its molecular pathogenesis difficult to understand and its diagnosis and treatment during the early stages difficult to determine. Dis...