AIMC Topic: Ultrasonography, Mammary

Clear Filters Showing 21 to 30 of 218 articles

A deep learning approach for early prediction of breast cancer neoadjuvant chemotherapy response on multistage bimodal ultrasound images.

BMC medical imaging
Neoadjuvant chemotherapy (NAC) is a systemic and systematic chemotherapy regimen for breast cancer patients before surgery. However, NAC is not effective for everyone, and the process is excruciating. Therefore, accurate early prediction of the effic...

ATEDU-NET: An Attention-Embedded Deep Unet for multi-disease diagnosis in chest X-ray images, breast ultrasound, and retina fundus.

Computers in biology and medicine
In image segmentation for medical image analysis, effective upsampling is crucial for recovering spatial information lost during downsampling. This challenge becomes more pronounced when dealing with diverse medical image modalities, which can signif...

Enhancing lesion detection in automated breast ultrasound using unsupervised multi-view contrastive learning with 3D DETR.

Medical image analysis
The inherent variability of lesions poses challenges in leveraging AI in 3D automated breast ultrasound (ABUS) for lesion detection. Traditional methods based on single scans have fallen short compared to comprehensive evaluations by experienced sono...

Effective BCDNet-based breast cancer classification model using hybrid deep learning with VGG16-based optimal feature extraction.

BMC medical imaging
PROBLEM: Breast cancer is a leading cause of death among women, and early detection is crucial for improving survival rates. The manual breast cancer diagnosis utilizes more time and is subjective. Also, the previous CAD models mostly depend on manma...

Explainable attention based breast tumor segmentation using a combination of UNet, ResNet, DenseNet, and EfficientNet models.

Scientific reports
This study utilizes the Breast Ultrasound Image (BUSI) dataset to present a deep learning technique for breast tumor segmentation based on a modified UNet architecture. To improve segmentation accuracy, the model integrates attention mechanisms, such...

Deep learning radiomics on grayscale ultrasound images assists in diagnosing benign and malignant of BI-RADS 4 lesions.

Scientific reports
This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breas...

A feature fusion method based on radiomic features and revised deep features for improving tumor prediction in ultrasound images.

Computers in biology and medicine
BACKGROUND: Radiomic features and deep features are both vitally helpful for the accurate prediction of tumor information in breast ultrasound. However, whether integrating radiomic features and deep features can improve the prediction performance of...

Interactively Fusing Global and Local Features for Benign and Malignant Classification of Breast Ultrasound Images.

Ultrasound in medicine & biology
OBJECTIVE: Breast ultrasound (BUS) is used to classify benign and malignant breast tumors, and its automatic classification can reduce subjectivity. However, current convolutional neural networks (CNNs) face challenges in capturing global features, w...

Attention-based Fusion Network for Breast Cancer Segmentation and Classification Using Multi-modal Ultrasound Images.

Ultrasound in medicine & biology
OBJECTIVE: Breast cancer is one of the most commonly occurring cancers in women. Thus, early detection and treatment of cancer lead to a better outcome for the patient. Ultrasound (US) imaging plays a crucial role in the early detection of breast can...

CNN-Based Cross-Modality Fusion for Enhanced Breast Cancer Detection Using Mammography and Ultrasound.

Tomography (Ann Arbor, Mich.)
Breast cancer is a leading cause of mortality among women in Taiwan and globally. Non-invasive imaging methods, such as mammography and ultrasound, are critical for early detection, yet standalone modalities have limitations in regard to their diagn...