AIMC Topic: Ultrasonography, Mammary

Clear Filters Showing 21 to 30 of 227 articles

A multi-task self-supervised approach for mass detection in automated breast ultrasound using double attention recurrent residual U-Net.

Computers in biology and medicine
Breast cancer is the most common and lethal cancer among women worldwide. Early detection using medical imaging technologies can significantly improve treatment outcomes. Automated breast ultrasound, known as ABUS, offers more advantages compared to ...

Integrating ultrasound radiomics and clinicopathological features for machine learning-based survival prediction in patients with nonmetastatic triple-negative breast cancer.

BMC cancer
OBJECTIVE: This study aimed to evaluate the predictive value of implementing machine learning models based on ultrasound radiomics and clinicopathological features in the survival analysis of triple-negative breast cancer (TNBC) patients.

Habitat-Based Radiomics for Revealing Tumor Heterogeneity and Predicting Residual Cancer Burden Classification in Breast Cancer.

Clinical breast cancer
PURPOSE: To investigate the feasibility of characterizing tumor heterogeneity in breast cancer ultrasound images using habitat analysis technology and establish a radiomics machine learning model for predicting response to neoadjuvant chemotherapy (N...

BCT-Net: semantic-guided breast cancer segmentation on BUS.

Medical & biological engineering & computing
Accurately and swiftly segmenting breast tumors is significant for cancer diagnosis and treatment. Ultrasound imaging stands as one of the widely employed methods in clinical practice. However, due to challenges such as low contrast, blurred boundari...

A deep learning approach for early prediction of breast cancer neoadjuvant chemotherapy response on multistage bimodal ultrasound images.

BMC medical imaging
Neoadjuvant chemotherapy (NAC) is a systemic and systematic chemotherapy regimen for breast cancer patients before surgery. However, NAC is not effective for everyone, and the process is excruciating. Therefore, accurate early prediction of the effic...

ATEDU-NET: An Attention-Embedded Deep Unet for multi-disease diagnosis in chest X-ray images, breast ultrasound, and retina fundus.

Computers in biology and medicine
In image segmentation for medical image analysis, effective upsampling is crucial for recovering spatial information lost during downsampling. This challenge becomes more pronounced when dealing with diverse medical image modalities, which can signif...

Enhancing lesion detection in automated breast ultrasound using unsupervised multi-view contrastive learning with 3D DETR.

Medical image analysis
The inherent variability of lesions poses challenges in leveraging AI in 3D automated breast ultrasound (ABUS) for lesion detection. Traditional methods based on single scans have fallen short compared to comprehensive evaluations by experienced sono...

Effective BCDNet-based breast cancer classification model using hybrid deep learning with VGG16-based optimal feature extraction.

BMC medical imaging
PROBLEM: Breast cancer is a leading cause of death among women, and early detection is crucial for improving survival rates. The manual breast cancer diagnosis utilizes more time and is subjective. Also, the previous CAD models mostly depend on manma...