Pathological pain subtypes can be classified as either neuropathic pain, caused by a somatosensory nervous system lesion or disease, or nociplastic pain, which develops without evidence of somatosensory system damage. Since there is no gold standard ...
Acute activation of innate immune response in the brain, or neuroinflammation, protects this vital organ from a range of external pathogens and promotes healing after traumatic brain injury. However, chronic neuroinflammation leading to the activatio...
Neurotransmitters, such as dopamine and serotonin, are responsible for mediating a wide array of neurologic functions, from memory to motivation. From measurements using fast scan cyclic voltammetry (FSCV), one of the main tools used to detect synapt...
Accurate prediction of protein-ligand interactions can greatly promote drug development. Recently, a number of deep-learning-based methods have been proposed to predict protein-ligand binding affinities. However, these methods independently extract t...
Catecholamine neurotransmitters, specifically, dopamine (DA), epinephrine (EP), and norepinephrine (NE), are known as substantial indicators of various neurological diseases. Developing rapid detection methods capable of simultaneously screening thei...
G-protein-coupled receptors (GPCRs), also known as 7-transmembrane receptors, are the single largest class of drug targets. Consequently, a large amount of preclinical assays having GPCRs as molecular targets has been released to public sources like ...
The United States of America is fighting against one of its worst-ever drug crises. Over 900 people a week die from opioid- or heroin-related overdoses, while millions more suffer from opioid prescription addiction. Recently, drug overdoses caused by...
Parkinson's disease (PD) is a common neurodegenerative disorder. It has a delitescent onset and a slow progress. The clinical manifestations of PD in patients are highly heterogeneous. Thus, PD diagnosis process is complex and mainly depends on the p...
To overcome the limitations of fast scan cyclic voltammetry (FSCV) to discriminate between catecholamines, we discuss new approaches to monitor the dynamics of these neurochemicals with high spatial, genetic, and temporal specificity.
Predicting drug-protein interactions (DPIs) for target proteins involved in dopamine pathways is a very important goal in medicinal chemistry. We can tackle this problem using Molecular Docking or Machine Learning (ML) models for one specific protein...