AI Medical Compendium Journal:
Circulation. Arrhythmia and electrophysiology

Showing 1 to 10 of 25 articles

Comparing Phenotypes for Acute and Long-Term Response to Atrial Fibrillation Ablation Using Machine Learning.

Circulation. Arrhythmia and electrophysiology
BACKGROUND: It is difficult to identify patients with atrial fibrillation (AF) most likely to respond to ablation. While any arrhythmia patient may recur after acutely successful ablation, AF is unusual in that patients may have long-term arrhythmia ...

Engineering of Generative Artificial Intelligence and Natural Language Processing Models to Accurately Identify Arrhythmia Recurrence.

Circulation. Arrhythmia and electrophysiology
BACKGROUND: Large language models (LLMs) such as Chat Generative Pre-trained Transformer (ChatGPT) excel at interpreting unstructured data from public sources, yet are limited when responding to queries on private repositories, such as electronic hea...

Using Atrial Fibrillation Burden Trends and Machine Learning to Predict Near-Term Risk of Cardiovascular Hospitalization.

Circulation. Arrhythmia and electrophysiology
BACKGROUND: Atrial fibrillation is associated with an increased risk of cardiovascular hospitalization (CVH), which may be triggered by changes in daily burden. Machine learning of dynamic trends in atrial fibrillation burden, as measured by insertab...

Predicting Atrial Fibrillation Recurrence by Combining Population Data and Virtual Cohorts of Patient-Specific Left Atrial Models.

Circulation. Arrhythmia and electrophysiology
BACKGROUND: Current ablation therapy for atrial fibrillation is suboptimal, and long-term response is challenging to predict. Clinical trials identify bedside properties that provide only modest prediction of long-term response in populations, while ...