INTRODUCTION: To investigate the potential of using artificial intelligence (AI), specifically large language models (LLMs), for synthesizing information in a simulated randomized clinical trial (RCT) for an anti-seizure medication, cenobamate, demon...
OBJECTIVES: Monitoring seizure control metrics is key to clinical care of patients with epilepsy. Manually abstracting these metrics from unstructured text in electronic health records (EHR) is laborious. We aimed to abstract the date of last seizure...
PURPOSE: This study aimed to develop a classifier using supervised machine learning to effectively assess the impact of clinical, demographical, and biochemical factors in accurately predicting the antiseizure medications (ASMs) treatment response in...
BACKGROUND: Epilepsy is a serious complication after an ischemic stroke. Although two studies have developed prediction model for post-stroke epilepsy (PSE), their accuracy remains insufficient, and their applicability to different populations is unc...
OBJECTIVE: Approximately 20-30 % of epilepsy patients exhibit negative findings on routine magnetic resonance imaging, and this condition is known as nonlesional epilepsy. Absence epilepsy (AE) is a prevalent form of nonlesional epilepsy. This study ...
PURPOSE: Focal cortical dysplasias (FCDs) are a leading cause of drug-resistant epilepsy. Early detection and resection of FCDs have favorable prognostic implications for postoperative seizure freedom. Despite advancements in imaging methods, FCD det...
Given improvements in computing power, artificial intelligence (AI) with deep learning has emerged as the state-of-the art method for the analysis of medical imaging data and will increasingly be used in the clinical setting. Recent work in epilepsy ...
PURPOSE: The currently available indicators-sensitivity and specificity of expert radiological evaluation of MRIs-to identify mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS) are deficient, as they cannot be easily asse...
OBJECTIVE: Stereoelectroencephalography (SEEG) has experienced a recent growth in adoption for epileptogenic zone (EZ) localization. Advances in robotics have the potential to improve the efficiency and safety of this intracranial seizure monitoring ...
BACKGROUND AND PURPOSE: Novel approaches applying machine-learning methods to neuroimaging data seek to develop individualized measures that will aid in the diagnosis and treatment of brain-based disorders such as temporal lobe epilepsy (TLE). Using ...