AI Medical Compendium Journal:
European journal of nuclear medicine and molecular imaging

Showing 1 to 10 of 112 articles

Eliminating the second CT scan of dual-tracer total-body PET/CT via deep learning-based image synthesis and registration.

European journal of nuclear medicine and molecular imaging
PURPOSE: This study aims to develop and validate a deep learning framework designed to eliminate the second CT scan of dual-tracer total-body PET/CT imaging.

Evaluation of deep learning-based scatter correction on a long-axial field-of-view PET scanner.

European journal of nuclear medicine and molecular imaging
OBJECTIVE: Long-axial field-of-view (LAFOV) positron emission tomography (PET) systems allow higher sensitivity, with an increased number of detected lines of response induced by a larger angle of acceptance. However this extended angle increases the...

Optimizing MR-based attenuation correction in hybrid PET/MR using deep learning: validation with a flatbed insert and consistent patient positioning.

European journal of nuclear medicine and molecular imaging
PURPOSE: To address the challenges of verifying MR-based attenuation correction (MRAC) in PET/MR due to CT positional mismatches and alignment issues, this study utilized a flatbed insert and arms-down positioning during PET/CT scans to achieve preci...

Artificial intelligence-based cardiac transthyretin amyloidosis detection and scoring in scintigraphy imaging: multi-tracer, multi-scanner, and multi-center development and evaluation study.

European journal of nuclear medicine and molecular imaging
INTRODUCTION: Providing tools for comprehensively evaluating scintigraphy images could enhance transthyretin amyloid cardiomyopathy (ATTR-CM) diagnosis. This study aims to automatically detect and score ATTR-CM in total body scintigraphy images using...

Generative artificial intelligence enables the generation of bone scintigraphy images and improves generalization of deep learning models in data-constrained environments.

European journal of nuclear medicine and molecular imaging
PURPOSE: Advancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generat...

PSMA PET/CT based multimodal deep learning model for accurate prediction of pelvic lymph-node metastases in prostate cancer patients identified as candidates for extended pelvic lymph node dissection by preoperative nomograms.

European journal of nuclear medicine and molecular imaging
PURPOSE: To develop and validate a prostate-specific membrane antigen (PSMA) PET/CT based multimodal deep learning model for predicting pathological lymph node invasion (LNI) in prostate cancer (PCa) patients identified as candidates for extended pel...

Empowering PET imaging reporting with retrieval-augmented large language models and reading reports database: a pilot single center study.

European journal of nuclear medicine and molecular imaging
PURPOSE: The potential of Large Language Models (LLMs) in enhancing a variety of natural language tasks in clinical fields includes medical imaging reporting. This pilot study examines the efficacy of a retrieval-augmented generation (RAG) LLM system...

Clinical impact of an explainable machine learning with amino acid PET imaging: application to the diagnosis of aggressive glioma.

European journal of nuclear medicine and molecular imaging
PURPOSE: Radiomics-based machine learning (ML) models of amino acid positron emission tomography (PET) images have shown efficiency in glioma prediction tasks. However, their clinical impact on physician interpretation remains limited. This study inv...

Robust and interpretable deep learning system for prognostic stratification of extranodal natural killer/T-cell lymphoma.

European journal of nuclear medicine and molecular imaging
PURPOSE: Extranodal natural killer/T-cell lymphoma (ENKTCL) is an hematologic malignancy with prognostic heterogeneity. We aimed to develop and validate DeepENKTCL, an interpretable deep learning prediction system for prognosis risk stratification in...

A deep learning method for total-body dynamic PET imaging with dual-time-window protocols.

European journal of nuclear medicine and molecular imaging
PURPOSE: Prolonged scanning durations are one of the primary barriers to the widespread clinical adoption of dynamic Positron Emission Tomography (PET). In this paper, we developed a deep learning algorithm that capable of predicting dynamic images f...