AI Medical Compendium Journal:
JCO precision oncology

Showing 1 to 7 of 7 articles

Annotation-Free Whole-Slide Image Analysis Method to Assess Immune Infiltration in Colorectal Cancer.

JCO precision oncology
PURPOSE: Tumor-infiltrating lymphocytes (TILs) play a crucial role in host antitumor processes. High level of TILs is associated with better outcomes for patients. We aim to automatically quantify TILs without any nuclei annotation and further constr...

Training, Validating, and Testing Machine Learning Prediction Models for Endometrial Cancer Recurrence.

JCO precision oncology
PURPOSE: Endometrial cancer (EC) is the most common gynecologic cancer in the United States with rising incidence and mortality. Despite optimal treatment, 15%-20% of all patients will recur. To better select patients for adjuvant therapy, it is impo...

Digital Pathology-Based Multimodal Artificial Intelligence Scores and Outcomes in a Randomized Phase III Trial in Men With Nonmetastatic Castration-Resistant Prostate Cancer.

JCO precision oncology
PURPOSE: The SPARTAN trial demonstrated that the addition of apalutamide to androgen deprivation therapy improves outcomes among patients with nonmetastatic castration-resistant prostate cancer (nmCRPC). We applied a previously reported digital histo...

Improving Prediction of Survival and Progression in Metastatic Non-Small Cell Lung Cancer After Immunotherapy Through Machine Learning of Circulating Tumor DNA.

JCO precision oncology
PURPOSE: To use modern machine learning approaches to enhance and automate the feature extraction from the longitudinal circulating tumor DNA (ctDNA) data and to improve the prediction of survival and disease progression, risk stratification, and tre...

Clinical Validation of Artificial Intelligence-Powered PD-L1 Tumor Proportion Score Interpretation for Immune Checkpoint Inhibitor Response Prediction in Non-Small Cell Lung Cancer.

JCO precision oncology
PURPOSE: Evaluation of PD-L1 tumor proportion score (TPS) by pathologists has been very impactful but is limited by factors such as intraobserver/interobserver bias and intratumor heterogeneity. We developed an artificial intelligence (AI)-powered an...

Training, Validation, and Test of Deep Learning Models for Classification of Receptor Expressions in Breast Cancers From Mammograms.

JCO precision oncology
PURPOSE: The molecular subtype of breast cancer is an important component of establishing the appropriate treatment strategy. In clinical practice, molecular subtypes are determined by receptor expressions. In this study, we developed a model using d...