OBJECTIVE: Functional near-infrared spectroscopy (fNIRS) is expected to be applied to brain-computer interface (BCI) technologies. Since lengthy fNIRS measurements are uncomfortable for participants, it is difficult to obtain enough data to train cla...
OBJECTIVE: In the last decades, many EMG-controlled robotic devices were developed. Since stiffness control may be required to perform skillful interactions, different groups developed devices whose stiffness is real-time controlled based on EMG sign...
OBJECTIVE: Numerous studies in the area of BCI are focused on the search for a better experimental paradigm-a set of mental actions that a user can evoke consistently and a machine can discriminate reliably. Examples of such mental activities are mot...
OBJECTIVE: Common spatial patterns (CSP) is a prominent feature extraction algorithm in motor imagery (MI)-based brain-computer interfaces (BCIs). However, CSP is computed using sample-based covariance-matrix estimation. Hence, its performance deteri...
OBJECTIVE: Recording and stimulating from the peripheral nervous system are becoming important components in a new generation of bioelectronics systems. Although neurostimulation has seen a history of successful chronic applications in humans, periph...
OBJECTIVE: Electroencephalography (EEG) recorded during transcranial alternating current simulation (tACS) is highly desirable in order to investigate brain dynamics during stimulation, but is corrupted by large amplitude stimulation artefacts. Artef...
OBJECTIVE: The extraction and identification of single-unit activities in intracortically recorded electric signals have a key role in basic neuroscience, but also in applied fields, like in the development of high-accuracy brain-computer interfaces....
OBJECTIVE: Electroencephalogram (EEG) signals are non-stationary. This could be due to internal fluctuation of brain states such as fatigue, frustration, etc. This necessitates the development of adaptive brain-computer interfaces (BCI) whose perform...
OBJECTIVE: Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) in patients with Parkinson's disease and dystonia improves motor symptoms and quality of life. Traditionally, pallidal borders have been demarcated by electr...