AIMC Journal:
Scientific reports

Showing 1141 to 1150 of 5361 articles

Robustly detecting mpox and non-mpox using a deep learning framework based on image inpainting.

Scientific reports
Due to the lack of efficient mpox diagnostic technology, mpox cases continue to increase. Recently, the great potential of deep learning models in detecting mpox and non-mpox has been proven. However, existing methods are susceptible to interference ...

A hybrid explainable model based on advanced machine learning and deep learning models for classifying brain tumors using MRI images.

Scientific reports
Brain tumors present a significant global health challenge, and their early detection and accurate classification are crucial for effective treatment strategies. This study presents a novel approach combining a lightweight parallel depthwise separabl...

Kinetics, central composite design and artificial neural network modelling of ciprofloxacin antibiotic photodegradation using fabricated cobalt-doped zinc oxide nanoparticles.

Scientific reports
Cobalt-doped zinc oxide nanoparticles were fabricated and examined in this study as a potential photocatalyst for the antibiotic ciprofloxacin (CIPF) degradation when exposed to visible LED light. The Co-precipitation technique created Cobalt-doped z...

Deep learning algorithms enable MRI-based scapular morphology analysis with values comparable to CT-based assessments.

Scientific reports
Scapular morphological attributes show promise as prognostic indicators of retear following rotator cuff repair. Current evaluation techniques using single-slice magnetic-resonance imaging (MRI) are, however, prone to error, while more accurate compu...

Hypothalamic atrophy in primary lateral sclerosis, assessed by convolutional neural network-based automatic segmentation.

Scientific reports
Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by cata...

Combining machine learning and single-cell sequencing to identify key immune genes in sepsis.

Scientific reports
This research aimed to identify novel indicators for sepsis by analyzing RNA sequencing data from peripheral blood samples obtained from sepsis patients (n = 23) and healthy controls (n = 10). 5148 differentially expressed genes were identified using...

The impact of preschool children's physical fitness evaluation under self organizing maps neural network.

Scientific reports
To improve the scientific accuracy and precision of children's physical fitness evaluations, this study proposes a model that combines self-organizing maps (SOM) neural networks with cluster analysis. Existing evaluation methods often rely on traditi...

Using XBGoost, an interpretable machine learning model, for diagnosing prostate cancer in patients with PSA < 20 ng/ml based on the PSAMR indicator.

Scientific reports
To create a diagnostic tool before biopsy for patients with prostate-specific antigen (PSA) levels < 20 ng/ml to minimize prostate biopsy-related discomfort and risks. Data from 655 patients who underwent transperineal prostate biopsy at the First Af...

The importance of clinical experience in AI-assisted corneal diagnosis: verification using intentional AI misleading.

Scientific reports
We developed an AI system capable of automatically classifying anterior eye images as either normal or indicative of corneal diseases. This study aims to investigate the influence of AI's misleading guidance on ophthalmologists' responses. This cross...

Deep learning-integrated MRI brain tumor analysis: feature extraction, segmentation, and Survival Prediction using Replicator and volumetric networks.

Scientific reports
The most prevalent form of malignant tumors that originate in the brain are known as gliomas. In order to diagnose, treat, and identify risk factors, it is crucial to have precise and resilient segmentation of the tumors, along with an estimation of ...