AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Abdomen

Showing 21 to 30 of 234 articles

Clear Filters

Clinical feasibility of deep learning based synthetic contrast enhanced abdominal CT in patients undergoing non enhanced CT scans.

Scientific reports
Our objective was to develop and evaluate the clinical feasibility of deep-learning-based synthetic contrast-enhanced computed tomography (DL-SynCCT) in patients designated for nonenhanced CT (NECT). We proposed a weakly supervised learning with the ...

Prospective Deployment of Deep Learning Reconstruction Facilitates Highly Accelerated Upper Abdominal MRI.

Academic radiology
RATIONALE AND OBJECTIVES: To compare a conventional T1 volumetric interpolated breath-hold examination (VIBE) with SPectral Attenuated Inversion Recovery (SPAIR) fat saturation and a deep learning (DL)-reconstructed accelerated VIBE sequence with SPA...

Impact of Emerging Deep Learning-Based MR Image Reconstruction Algorithms on Abdominal MRI Radiomic Features.

Journal of computer assisted tomography
OBJECTIVE: This study aims to evaluate, on one MRI vendor's platform, the impact of deep learning (DL)-based reconstruction techniques on MRI radiomic features compared to conventional image reconstruction techniques.

Fast prediction of personalized abdominal organ doses from CT examinations by radiomics feature-based machine learning models.

Scientific reports
The X-rays emitted during CT scans can increase solid cancer risks by damaging DNA, with the risk tied to patient-specific organ doses. This study aims to establish a new method to predict patient specific abdominal organ doses from CT examinations u...

Artificial intelligence system for identification of overlooked lung metastasis in abdominopelvic computed tomography scans of patients with malignancy.

Diagnostic and interventional radiology (Ankara, Turkey)
PURPOSE: This study aimed to evaluate whether an artificial intelligence (AI) system can identify basal lung metastatic nodules examined using abdominopelvic computed tomography (CT) that were initially overlooked by radiologists.

Unleashing the strengths of unlabelled data in deep learning-assisted pan-cancer abdominal organ quantification: the FLARE22 challenge.

The Lancet. Digital health
Deep learning has shown great potential to automate abdominal organ segmentation and quantification. However, most existing algorithms rely on expert annotations and do not have comprehensive evaluations in real-world multinational settings. To addre...

Accelerated 2D radial Look-Locker T1 mapping using a deep learning-based rapid inversion recovery sampling technique.

NMR in biomedicine
Efficient abdominal coverage with T1-mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1 recovery. This work develops a T1-mapping framework for efficient abdominal coverage based on...

OTMorph: Unsupervised Multi-Domain Abdominal Medical Image Registration Using Neural Optimal Transport.

IEEE transactions on medical imaging
Deformable image registration is one of the essential processes in analyzing medical images. In particular, when diagnosing abdominal diseases such as hepatic cancer and lymphoma, multi-domain images scanned from different modalities or different ima...