AIMC Topic: Adenocarcinoma

Clear Filters Showing 31 to 40 of 243 articles

Machine learning-based identification of biomarkers and drugs in immunologically cold and hot pancreatic adenocarcinomas.

Journal of translational medicine
BACKGROUND: Pancreatic adenocarcinomas (PAADs) often exhibit a "cold" or immunosuppressive tumor milieu, which is associated with resistance to immune checkpoint blockade therapy; however, the underlying mechanisms are incompletely understood. Here, ...

Identification of histopathological classification and establishment of prognostic indicators of gastric adenocarcinoma based on deep learning algorithm.

Medical molecular morphology
The aim of this study is to establish a deep learning (DL) model to predict the pathological type of gastric adenocarcinoma cancer based on whole-slide images(WSIs). We downloaded 356 histopathological images of gastric adenocarcinoma (STAD) patients...

Integrating MRI-based radiomics and clinicopathological features for preoperative prognostication of early-stage cervical adenocarcinoma patients: in comparison to deep learning approach.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVES: The roles of magnetic resonance imaging (MRI) -based radiomics approach and deep learning approach in cervical adenocarcinoma (AC) have not been explored. Herein, we aim to develop prognosis-predictive models based on MRI-radiomics and cl...

Clinical-Grade Validation of an Autofluorescence Virtual Staining System With Human Experts and a Deep Learning System for Prostate Cancer.

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
The tissue diagnosis of adenocarcinoma and intraductal carcinoma of the prostate includes Gleason grading of tumor morphology on the hematoxylin and eosin stain and immunohistochemistry markers on the prostatic intraepithelial neoplasia-4 stain (CK5/...

Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms.

Digestion
BACKGROUND: Artificial intelligence (AI) using deep learning systems has recently been utilized in various medical fields. In the field of gastroenterology, AI is primarily implemented in image recognition and utilized in the realm of gastrointestina...

Lung Adenocarcinoma Systems Biomarker and Drug Candidates Identified by Machine Learning, Gene Expression Data, and Integrative Bioinformatics Pipeline.

Omics : a journal of integrative biology
Lung adenocarcinoma (LUAD) is a significant planetary health challenge with its high morbidity and mortality rate, not to mention the marked interindividual variability in treatment outcomes and side effects. There is an urgent need for robust system...

Development of high-quality artificial intelligence for computer-aided diagnosis in determining subtypes of colorectal cancer.

Journal of gastroenterology and hepatology
BACKGROUND AND AIM: There are no previous studies in which computer-aided diagnosis (CAD) diagnosed colorectal cancer (CRC) subtypes correctly. In this study, we developed an original CAD for the diagnosis of CRC subtypes.

Evaluating the prognostic value of tumor deposits in non-metastatic lymph node-positive colon adenocarcinoma using Cox regression and machine learning.

International journal of colorectal disease
BACKGROUND: The 8th AJCC TNM staging for non-metastatic lymph node-positive colon adenocarcinoma patients(NMLP-CA) stages solely by lymph node status, irrespective of the positivity of tumor deposits (TD). This study uses machine learning and Cox reg...