AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Adolescent

Showing 151 to 160 of 2957 articles

Clear Filters

Predicting mental health disparities using machine learning for African Americans in Southeastern Virginia.

Scientific reports
This study examined mental health disparities among African Americans using AI and machine learning for outcome prediction. Analyzing data from African American adults (18-85) in Southeastern Virginia (2016-2020), we found Mood Affective Disorders we...

Supervised machine learning compared to large language models for identifying functional seizures from medical records.

Epilepsia
OBJECTIVE: The Functional Seizures Likelihood Score (FSLS) is a supervised machine learning-based diagnostic score that was developed to differentiate functional seizures (FS) from epileptic seizures (ES). In contrast to this targeted approach, large...

Interpretable machine learning approaches for children's ADHD detection using clinical assessment data: an online web application deployment.

BMC psychiatry
BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a prevalent mental disorder characterized by hyperactivity, impulsivity, and inattention. This study aims to develop a verifiable and interpretable machine learning model to identify ADHD...

Deep learning-assisted screening and diagnosis of scoliosis: segmentation of bare-back images via an attention-enhanced convolutional neural network.

Journal of orthopaedic surgery and research
BACKGROUND: Traditional diagnostic tools for scoliosis screening necessitate a substantial number of specialized personnel and equipment, leading to inconvenience that can result in missed opportunities for early diagnosis and optimal treatment. We h...

Differentiating adolescent suicidal and nonsuicidal self-harm with artificial intelligence: Beyond suicidal intent and capability for suicide.

Journal of affective disorders
Clinical differentiation between adolescent suicidal self-harm (SSH) and nonsuicidal self-harm (NSSH) is a significant challenge for mental health professionals, and its feasibility is controversial. The aim of the present study was to determine whet...

Automated pediatric TMJ articular disk identification and displacement classification in MRI with machine learning.

Journal of dentistry
OBJECTIVE: To evaluate the performance of an automated two-step model interpreting pediatric temporomandibular joint (TMJ) magnetic resonance imaging (MRI) using artificial intelligence (AI). Using deep learning techniques, the model first automatica...

Classification of fundus autofluorescence images based on macular function in retinitis pigmentosa using convolutional neural networks.

Japanese journal of ophthalmology
PURPOSE: To determine whether convolutional neural networks (CNN) can classify the severity of central vision loss using fundus autofluorescence (FAF) images and color fundus images of retinitis pigmentosa (RP), and to evaluate the utility of those i...

Identifying Adolescent Depression and Anxiety Through Real-World Data and Social Determinants of Health: Machine Learning Model Development and Validation.

JMIR mental health
BACKGROUND: The prevalence of adolescent mental health conditions such as depression and anxiety has significantly increased. Despite the potential of machine learning (ML), there is a shortage of models that use real-world data (RWD) to enhance earl...

Apriori algorithm based prediction of students' mental health risks in the context of artificial intelligence.

Frontiers in public health
INTRODUCTION: The increasing prevalence of mental health challenges among college students necessitates innovative approaches to early identification and intervention. This study investigates the application of artificial intelligence (AI) techniques...

Differentiating Functional Connectivity Patterns in ADHD and Autism Among the Young People: A Machine Learning Solution.

Journal of attention disorders
OBJECTIVE: ADHD and autism are complex and frequently co-occurring neurodevelopmental conditions with shared etiological and pathophysiological elements. In this paper, we attempt to differentiate these conditions among the young people in terms of i...