AIMC Topic: Aged

Clear Filters Showing 1951 to 1960 of 12887 articles

Do people prefer AI-generated patient educational materials over traditional ones?

Patient education and counseling
OBJECTIVE: This study aimed to assess people's preference between traditional and Artificial Intelligence (AI)-generated colon cancer staging Patient Education Materials (PEMs).

Predicting doxorubicin-induced cardiotoxicity in breast cancer: leveraging machine learning with synthetic data.

Medical & biological engineering & computing
Doxorubicin (DOXO) is a primary treatment for breast cancer but can cause cardiotoxicity in over 25% of patients within the first year post-chemotherapy. Recognizing at-risk patients before DOXO initiation offers pathways for alternative treatments o...

Diagnostic accuracy of an automated classifier for the detection of pleural effusions in patients undergoing lung ultrasound.

The American journal of emergency medicine
RATIONALE: Lung ultrasound, the most precise diagnostic tool for pleural effusions, is underutilized due to healthcare providers' limited proficiency. To address this, deep learning models can be trained to recognize pleural effusions. However, curre...

Deep learning-based MVIT-MLKA model for accurate classification of pancreatic lesions: a multicenter retrospective cohort study.

La Radiologia medica
BACKGROUND: Accurate differentiation between benign and malignant pancreatic lesions is critical for effective patient management. This study aimed to develop and validate a novel deep learning network using baseline computed tomography (CT) images t...

Opportunistic AI for enhanced cardiovascular disease risk stratification using abdominal CT scans.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
This study introduces the Deep Learning-based Cardiovascular Disease Incident (DL-CVDi) score, a novel biomarker derived from routine abdominal CT scans, optimized to predict cardiovascular disease (CVD) risk using deep survival learning. CT imaging,...

Research on predicting radiographic exposure time in imaging based on neural network prediction models.

Clinical neurology and neurosurgery
OBJECTIVE: To explore the anatomical and clinical factors that affect the radiographic exposure time in radial artery cerebral angiography and to establish a model.

Deep learning-based anterior segment identification and parameter assessment of primary angle closure disease in ultrasound biomicroscopy images.

BMJ open ophthalmology
PURPOSE: To develop an artificial intelligence algorithm to automatically identify the anterior segment structures and assess multiple parameters of primary angle closure disease (PACD) in ultrasound biomicroscopy (UBM) images.

Interpretable machine learning model for outcome prediction in patients with aneurysmatic subarachnoid hemorrhage.

Critical care (London, England)
BACKGROUND: Aneurysmatic subarachnoid hemorrhage (aSAH) is a critical condition associated with significant mortality rates and complex rehabilitation challenges. Early prediction of functional outcomes is essential for optimizing treatment strategie...

Machine learning-driven prediction of medical expenses in triple-vessel PCI patients using feature selection.

BMC health services research
Revascularization therapies, such as percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG), alleviate symptoms and treat myocardial ischemia. Patients with multivessel disease, particularly those undergoing 3-vessel PCI,...

Constructing a fall risk prediction model for hospitalized patients using machine learning.

BMC public health
STUDY OBJECTIVES: This study aimed to identify the risk factors associated with falls in hospitalized patients, develop a predictive risk model using machine learning algorithms, and evaluate the validity of the model's predictions.