AIMC Topic: Algorithms

Clear Filters Showing 361 to 370 of 26936 articles

Principal fitted component framework for robust support vector regression based on bounded loss: A simulation study with potential applications.

PloS one
The inferential results regarding estimates of Support Vector Regression (SVR) are highly influenced by anomalies and ill-conditioned predictors. Excessive dimensions of data also make the model complex. To improve estimation accuracy, this paper int...

Model parameterization of robotic systems through the bio-inspired optimization.

PloS one
The accurate modeling of dynamic systems, particularly robotic ones, is crucial in the industry. It enables simulation-based approaches that facilitate various tasks without requiring the physical system, thereby reducing risks and costs. These appro...

Artificial intelligence-based Raynaud's quantification index (ARTIX): an objective mobile-based tool for patient-centered assessment of Raynaud's phenomenon.

Arthritis research & therapy
BACKGROUND: We aimed to develop an artificial intelligence algorithm able to assess Raynaud's phenomenon (RP) from mobile phone photography, ensuring as a patient-centered, image-based method for RP quantification.

Machine learning model for preoperative classification of stromal subtypes in salivary gland pleomorphic adenoma based on ultrasound histogram analysis.

BMC oral health
OBJECTIVES: Accurate preoperative discrimination of salivary gland pleomorphic adenoma (SPA) stromal subtypes is essential for therapeutic plannings. We aimed to establish and test machine learning (ML) models for classification of stromal subtypes i...

Efficient structure learning of gene regulatory networks with Bayesian active learning.

BMC bioinformatics
BACKGROUND: Gene regulatory network modeling is a complex structure learning problem that involves both observational data analysis and experimental interventions. Bayesian causal discovery provides a principled framework for modeling observational d...

Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique.

Scientific reports
This study develops and evaluates advanced hybrid machine learning models-ADA-ARD (AdaBoost on ARD Regression), ADA-BRR (AdaBoost on Bayesian Ridge Regression), and ADA-GPR (AdaBoost on Gaussian Process Regression)-optimized via the Black Widow Optim...

Use of deep learning-based NLP models for full-text data elements extraction for systematic literature review tasks.

Scientific reports
Systematic literature review (SLR) is an important tool for Health Economics and Outcomes Research (HEOR) evidence synthesis. SLRs involve the identification and selection of pertinent publications and extraction of relevant data elements from full-t...

Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning algorithm study.

Scientific reports
Kinesiophobia is particularly common in postoperative lung cancer patients, which causes patients may be reluctant to cough and move due to misperception, internal fear or fear of pain, and avoid rehabilitation training affecting postoperative recove...

FPA-based weighted average ensemble of deep learning models for classification of lung cancer using CT scan images.

Scientific reports
Cancer is among the most dangerous diseases contributing to rising global mortality rates. Lung cancer, particularly adenocarcinoma, is one of the deadliest forms and severely impacts human life. Early diagnosis and appropriate treatment significantl...

Predicting genetic merit in Harnali sheep using machine learning techniques.

Tropical animal health and production
Machine learning techniques offer promising avenues for enhancing animal breeding programs by leveraging genomic and phenotypic data to predict valuable traits accurately. In this study, we evaluated seven machine learning algorithms viz., K-nearest ...