AIMC Topic: Algorithms

Clear Filters Showing 61 to 70 of 26874 articles

Machine learning-based analysis on pharmaceutical compounds interaction with polymer to estimate drug solubility in formulations.

Scientific reports
This study introduces a sophisticated predictive framework for determining drug solubility and activity values in formulations via machine learning. The framework utilizes a comprehensive dataset consisting of more than 12,000 data rows and 24 input ...

TDNN achitecture with efficient channel attention and improved residual blocks for accurate speaker recognition.

Scientific reports
In recent years, with the advancement of deep learning, Convolutional Neural Networks (CNNs) have been widely applied in speaker recognition, making CNN-based speaker embedding learning the predominant method for speaker verification. Time Delay Neur...

Enhancing breast cancer diagnosis through machine learning algorithms.

Scientific reports
Among the most important health concerns in the world, and the number one cause of death in women, is breast cancer. Bearing in mind that there are more than 100 types of cancer, each presenting different symptoms, its early detection is indeed a big...

Optimization of biological activities of Agaricus species: an artificial intelligence-assisted approach.

Scientific reports
This study aims to determine the optimum extraction conditions that maximize the biological activities of Agaricus campestris and Agaricus bisporus species. In the study, a total of 64 extraction experiments were carried out at different temperatures...

A federated learning-based privacy-preserving image processing framework for brain tumor detection from CT scans.

Scientific reports
The detection of brain tumors is crucial in medical imaging, because accurate and early diagnosis can have a positive effect on patients. Because traditional deep learning models store all their data together, they raise questions about privacy, comp...

Advancing BCI with a transformer-based model for motor imagery classification.

Scientific reports
Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices, offering significant benefits for individuals with motor impairments. Traditional machine learning methods for EEG-based motor imagery (MI)...

Explainable few-shot learning workflow for detecting invasive and exotic tree species.

Scientific reports
Deep Learning methods are notorious for relying on extensive labeled datasets to train and assess their performance. This can cause difficulties in practical situations where models should be trained for new applications for which very little data is...

Dual smart sensor data-based deep learning network for premature infant hypoglycemia detection.

Scientific reports
In general, deficient birth weight neonates suffer from hypoglycemia, and this can be quite disadvantageous. Like oxygen, glucose is a building block of life and constitutes the significant share of energy produced by the fetus and the neonate during...

Scalable geometric learning with correlation-based functional brain networks.

Scientific reports
Correlation matrices serve as fundamental representations of functional brain networks in neuroimaging. Conventional analyses often treat pairwise interactions independently within Euclidean space, neglecting the underlying geometry of correlation st...

Parsimonious and explainable machine learning for predicting mortality in patients post hip fracture surgery.

Scientific reports
Hip fractures among the elderly population continue to present significant risks and high mortality rates despite advancements in surgical procedures. In this study, we developed machine learning (ML) algorithms to estimate 30-day mortality risk post...