AIMC Topic: Bacteria

Clear Filters Showing 31 to 40 of 436 articles

Colonial bacterial memetic algorithm and its application on a darts playing robot.

Scientific reports
In this paper, we present the Colonial Bacterial Memetic Algorithm (CBMA), an advanced evolutionary optimization approach for robotic applications. CBMA extends the Bacterial Memetic Algorithm by integrating Cultural Algorithms and co-evolutionary dy...

Machine learning assisted paper-based fluorescent sensor array with metal-doped multicolor carbon quantum dots for identification and inactivation of bacteria.

Talanta
Bacterial infection is a thorny threat in a variety of fields, including medicine, environment, food, and agriculture. A multifunctional platform that meets the demands of both bacterial identification and real-time inactivation is urgently needed. T...

aurora: a machine learning gwas tool for analyzing microbial habitat adaptation.

Genome biology
A primary goal of microbial genome-wide association studies is identifying genomic variants associated with a particular habitat. Existing tools fail to identify known causal variants if the analyzed trait shaped the phylogeny. Furthermore, due to in...

Artificial intelligence in bacterial diagnostics and antimicrobial susceptibility testing: Current advances and future prospects.

Biosensors & bioelectronics
Recently, artificial intelligence (AI) has emerged as a transformative tool, enhancing the speed, accuracy, and scalability of bacterial diagnostics. This review explores the role of AI in revolutionizing bacterial detection and antimicrobial suscept...

Biofilm-mediated infections; novel therapeutic approaches and harnessing artificial intelligence for early detection and treatment of biofilm-associated infections.

Microbial pathogenesis
A biofilm is a group of bacteria that have self-produced a matrix and are grouped together in a dense population. By resisting the host's immune system's phagocytosis process and attacking with anti-microbial chemicals such as reactive oxygen and nit...

Revolutionizing biological digital twins: Integrating internet of bio-nano things, convolutional neural networks, and federated learning.

Computers in biology and medicine
Digital twins (DTs) are advancing biotechnology by providing digital models for drug discovery, digital health applications, and biological assets, including microorganisms. However, the hypothesis posits that implementing micro- and nanoscale DTs, e...

deep-Sep: a deep learning-based method for fast and accurate prediction of selenoprotein genes in bacteria.

mSystems
Selenoproteins are a special group of proteins with major roles in cellular antioxidant defense. They contain the 21st amino acid selenocysteine (Sec) in the active sites, which is encoded by an in-frame UGA codon. Compared to eukaryotes, identificat...

Enhancing Bacterial Phenotype Classification Through the Integration of Autogating and Automated Machine Learning in Flow Cytometric Analysis.

Cytometry. Part A : the journal of the International Society for Analytical Cytology
Although flow cytometry produces reliable results, the data processing from gating to fingerprinting is prone to subjective bias. Here, we integrated autogating with Automated Machine Learning in flow cytometry to enhance the classification of bacter...

Effect of training sample size, image resolution and epochs on filamentous and floc-forming bacteria classification using machine learning.

Journal of environmental management
Computer vision techniques can expedite the detection of bacterial growth in wastewater treatment plants and alleviate some of the shortcomings associated with traditional detection methods. In recent years, researchers capitalized on this potential ...