AI Medical Compendium Topic:
Biomarkers, Tumor

Clear Filters Showing 521 to 530 of 985 articles

Deep learning neural network image analysis of immunohistochemical protein expression reveals a significantly reduced expression of biglycan in breast cancer.

PloS one
New breast cancer biomarkers have been sought for better tumor characterization and treatment. Among these putative markers, there is Biglycan (BGN). BGN is a class I small leucine-rich proteoglycan family of proteins characterized by a protein core ...

Annotation-Free Deep Learning-Based Prediction of Thyroid Molecular Cancer Biomarker BRAF (V600E) from Cytological Slides.

International journal of molecular sciences
Thyroid cancer is the most common endocrine cancer. Papillary thyroid cancer (PTC) is the most prevalent form of malignancy among all thyroid cancers arising from follicular cells. Fine needle aspiration cytology (FNAC) is a non-invasive method regar...

Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images.

Cell reports. Medicine
Homologous recombination DNA-repair deficiency (HRD) is becoming a well-recognized marker of platinum salt and polyADP-ribose polymerase inhibitor chemotherapies in ovarian and breast cancers. While large-scale screening for HRD using genomic markers...

Deep-Learning Algorithm and Concomitant Biomarker Identification for NSCLC Prediction Using Multi-Omics Data Integration.

Biomolecules
Early diagnosis of lung cancer to increase the survival rate, which is currently at a low range of mid-30%, remains a critical need. Despite this, multi-omics data have rarely been applied to non-small-cell lung cancer (NSCLC) diagnosis. We developed...

Identification of glycolysis genes signature for predicting prognosis in malignant pleural mesothelioma by bioinformatics and machine learning.

Frontiers in endocrinology
BACKGROUND: Glycolysis-related genes as prognostic markers in malignant pleural mesothelioma (MPM) is still unclear. We hope to explore the relationship between glycolytic pathway genes and MPM prognosis by constructing prognostic risk models through...

Development of an automated combined positive score prediction pipeline using artificial intelligence on multiplexed immunofluorescence images.

Computers in biology and medicine
Immunotherapy targeting immune checkpoint proteins, such as programmed cell death ligand 1 (PD-L1), has shown impressive outcomes in many clinical trials but only 20%-40% of patients benefit from it. Utilizing Combined Positive Score (CPS) to evaluat...

Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer.

Nature communications
Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. The cost, time, and variability of PD-L1 quantification by immunohistochemistry (IHC) are a challenge. In contrast, hematoxyl...

Integrative Serum Metabolic Fingerprints Based Multi-Modal Platforms for Lung Adenocarcinoma Early Detection and Pulmonary Nodule Classification.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Identification of novel non-invasive biomarkers is critical for the early diagnosis of lung adenocarcinoma (LUAD), especially for the accurate classification of pulmonary nodule. Here, a multiplexed assay is developed on an optimized nanoparticle-bas...

Using Deep Learning to Predict Final HER2 Status in Invasive Breast Cancers That are Equivocal (2+) by Immunohistochemistry.

Applied immunohistochemistry & molecular morphology : AIMM
Invasive breast carcinomas are routinely tested for HER2 using immunohistochemistry (IHC), with reflex in situ hybridization (ISH) for those scored as equivocal (2+). ISH testing is expensive, time-consuming, and not universally available. In this st...

Artificial intelligence in pancreatic cancer.

Theranostics
Pancreatic cancer is the deadliest disease, with a five-year overall survival rate of just 11%. The pancreatic cancer patients diagnosed with early screening have a median overall survival of nearly ten years, compared with 1.5 years for those not di...