AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Carcinoma, Pancreatic Ductal

Showing 1 to 10 of 70 articles

Clear Filters

A Novel Deep Learning-based Pathomics Score for Prognostic Stratification in Pancreatic Ductal Adenocarcinoma.

Pancreas
BACKGROUND AND OBJECTIVES: Accurate survival prediction for pancreatic ductal adenocarcinoma (PDAC) is crucial for personalized treatment strategies. This study aims to construct a novel pathomics indicator using hematoxylin and eosin-stained whole s...

Integrating artificial intelligence with endoscopic ultrasound in the early detection of bilio-pancreatic lesions: Current advances and future prospects.

Best practice & research. Clinical gastroenterology
The integration of Artificial Intelligence (AI) in endoscopic ultrasound (EUS) represents a transformative advancement in the early detection and management of biliopancreatic lesions. This review highlights the current state of AI-enhanced EUS (AI-E...

Biomarkers, omics and artificial intelligence for early detection of pancreatic cancer.

Seminars in cancer biology
Pancreatic ductal adenocarcinoma (PDAC) is frequently diagnosed in its late stages when treatment options are limited. Unlike other common cancers, there are no population-wide screening programmes for PDAC. Thus, early disease detection, although ur...

Development and validation of a machine learning prognostic model based on an epigenomic signature in patients with pancreatic ductal adenocarcinoma.

International journal of medical informatics
BACKGROUND: In Pancreatic Ductal Adenocarcinoma (PDAC), current prognostic scores are unable to fully capture the biological heterogeneity of the disease. While some approaches investigating the role of multi-omics in PDAC are emerging, the analysis ...

From classical approaches to artificial intelligence, old and new tools for PDAC risk stratification and prediction.

Seminars in cancer biology
Pancreatic ductal adenocarcinoma (PDAC) is recognized as one of the most lethal malignancies, characterized by late-stage diagnosis and limited therapeutic options. Risk stratification has traditionally been performed using epidemiological studies an...

Development of PDAC diagnosis and prognosis evaluation models based on machine learning.

BMC cancer
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is difficult to detect early and highly aggressive, often leading to poor patient prognosis. Existing serum biomarkers like CA19-9 are limited in early diagnosis, failing to meet clinical needs. Mac...

Stroma and lymphocytes identified by deep learning are independent predictors for survival in pancreatic cancer.

Scientific reports
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers known to humans. However, not all patients fare equally poor survival, and a minority of patients even survives advanced disease for months or years. Thus, there is a clinical ...

A semi-supervised convolutional neural network for diagnosis of pancreatic ductal adenocarcinoma based on EUS-FNA cytological images.

BMC cancer
BACKGROUND: The cytological diagnostic process of EUS-FNA smears is time-consuming and manpower-intensive, and the conclusion could be subjective and controversial. Moreover, the relative lack of cytopathologists has limited the widespread implementa...

Enhancing pancreatic cancer diagnostics: Ensemble-based model for automated urine biomarker classification.

Computers in biology and medicine
This research addresses the critical challenge of early detection in pancreatic ductal adenocarcinoma (PDAC) by exploring urinary biomarkers and integrating artificial intelligence (AI) models. The study emphasizes the significance of liquid biopsy, ...