Renal cell carcinoma (RCC), accounting for 90% of all kidney cancer, is categorized into clear cell RCC (ccRCC) and non-clear cell RCC (non-ccRCC) for treatment based on the current NCCN Guidelines. Thus, the classification will be associated with th...
International journal of medical informatics
38678674
OBJECTIVES: Adherent perinephric fat (APF) poses significant challenges to surgical procedures. This study aimed to evaluate the usefulness of machine learning algorithms combined with MRI-based radiomics features for predicting the presence of APF.
International journal of molecular sciences
38673800
Clear-cell renal-cell carcinoma (ccRCC) is a silent-development pathology with a high rate of metastasis in patients. The activity of coding genes in metastatic progression is well known. New studies evaluate the association with non-coding genes, su...
OBJECTIVES: To distinguish histological subtypes of renal tumors using radiomic features and machine learning (ML) based on multiphase computed tomography (CT).
International journal of molecular sciences
38612943
Clear cell renal carcinoma (ccRCC), the most common subtype of renal cell carcinoma, has the high heterogeneity of a highly complex tumor microenvironment. Existing clinical intervention strategies, such as target therapy and immunotherapy, have fail...
BACKGROUND: Establishment of a reliable prognostic model and identification of novel biomarkers are urgently needed to develop precise therapy strategies for clear cell renal cell carcinoma (ccRCC). Stress response stated T cells (Tstr) are a new T-c...
Journal of the American Society for Mass Spectrometry
38690775
Metabolomics generates complex data necessitating advanced computational methods for generating biological insight. While machine learning (ML) is promising, the challenges of selecting the best algorithms and tuning hyperparameters, particularly for...
PURPOSE: To develop and validate a predictive combined model for metastasis in patients with clear cell renal cell carcinoma (ccRCC) by integrating multimodal data.
BACKGROUND: Metastasis renal cell carcinoma (RCC) patients have extremely high mortality rate. A predictive model for RCC micrometastasis based on pathomics could be beneficial for clinicians to make treatment decisions.
BACKGROUND: This study aims to explore machine learning(ML) methods for non-invasive assessment of WHO/ISUP nuclear grading in clear cell renal cell carcinoma(ccRCC) using contrast-enhanced ultrasound(CEUS) radiomics.