AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Chemotherapy, Adjuvant

Showing 1 to 10 of 77 articles

Clear Filters

The established of a machine learning model for predicting the efficacy of adjuvant interferon alpha1b in patients with advanced melanoma.

Frontiers in immunology
BACKGROUND: Interferon-alpha1b (IFN-α1b) has shown remarkable therapeutic potential as adjuvant therapy for melanoma. This study aimed to develop five machine learning models to evaluate the efficacy of postoperative IFN-α1b in patients with advanced...

Multitask machine learning-based tumor-associated collagen signatures predict peritoneal recurrence and disease-free survival in gastric cancer.

Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association
BACKGROUND: Accurate prediction of peritoneal recurrence for gastric cancer (GC) is crucial in clinic. The collagen alterations in tumor microenvironment affect the migration and treatment response of cancer cells. Herein, we proposed multitask machi...

Using Machine Learning Models to Predict Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer.

JCO clinical cancer informatics
PURPOSE: Neoadjuvant chemotherapy (NAC) is increasingly used in breast cancer. Predictive modeling is useful in predicting pathologic complete response (pCR) to NAC. We test machine learning (ML) models to predict pCR in breast cancer and explore met...

Improving the prediction of chemotherapy dose-limiting toxicity in colon cancer patients using an AI-CT-based 3D body composition of the entire L1-L5 lumbar spine.

Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
PURPOSE: Chemotherapy dose-limiting toxicities (DLT) pose a significant challenge in successful colon cancer treatment. Body composition analysis may enable tailored interventions thereby supporting the mitigation of chemotherapy toxic effects. This ...

Monitoring Over Time of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Patients Through an Ensemble Vision Transformers-Based Model.

Cancer medicine
BACKGROUND: Morphological and vascular characteristics of breast cancer can change during neoadjuvant chemotherapy (NAC). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-acquired pre- and mid-treatment quantitatively capture informatio...

Predicting the efficacy of neoadjuvant chemotherapy in breast cancer patients based on ultrasound longitudinal temporal depth network fusion model.

Breast cancer research : BCR
OBJECTIVE: The aim of this study was to develop and validate a deep learning radiomics (DLR) model based on longitudinal ultrasound data and clinical features to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breas...

Prediction of Chemotherapy Response in Locally Advanced Breast Cancer Patients at Pre-Treatment Using CT Textural Features and Machine Learning: Comparison of Feature Selection Methods.

Tomography (Ann Arbor, Mich.)
RATIONALE: Neoadjuvant chemotherapy (NAC) is a key element of treatment for locally advanced breast cancer (LABC). Predicting the response of NAC for patients with LABC before initiating treatment would be valuable to customize therapies and ensure t...

Utility of comprehensive genomic profiling combined with machine learning for prognostic stratification in stage II/III colorectal cancer after adjuvant chemotherapy.

International journal of clinical oncology
BACKGROUND AND PURPOSE: Accurate recurrence risk evaluation in patients with stage II and III colorectal cancer (CRC) remains difficult. Traditional histopathological methods frequently fall short in predicting outcomes after adjuvant chemotherapy. T...

Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer.

Nature communications
Self-supervised learning (SSL) automates the extraction and interpretation of histopathology features on unannotated hematoxylin-eosin-stained whole slide images (WSIs). We train an SSL Barlow Twins encoder on 435 colon adenocarcinoma WSIs from The C...