AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Cluster Analysis

Showing 61 to 70 of 1323 articles

Clear Filters

Robust graph structure learning under heterophily.

Neural networks : the official journal of the International Neural Network Society
A graph is a fundamental mathematical structure in characterizing relations between different objects and has been widely used on various learning tasks. Most methods implicitly assume a given graph to be accurate and complete. However, real data is ...

Fast Co-clustering via Anchor-guided Label Spreading.

Neural networks : the official journal of the International Neural Network Society
The attention towards clustering using anchor graph has grown due to its effectiveness and efficiency. As the most representative points in original data, anchors are also regarded as connecting the sample space to the label space. However, when ther...

An efficient framework based on local multi-representatives and noise-robust synthetic example generation for self-labeled semi-supervised classification.

Neural networks : the official journal of the International Neural Network Society
While self-labeled methods can exploit unlabeled and labeled instances to train classifiers, they are also restricted by the labeled instance number and distribution. SEG-SSC, k-means-SSC, LC-SSC, and LCSEG-SSC are sophisticated solutions for overcom...

EHM: Exploring dynamic alignment and hierarchical clustering in unsupervised domain adaptation via high-order moment-guided contrastive learning.

Neural networks : the official journal of the International Neural Network Society
Unsupervised domain adaptation (UDA) aims to annotate unlabeled target domain samples using transferable knowledge learned from the labeled source domain. Optimal transport (OT) is a widely adopted probability metric in transfer learning for quantify...

scSMD: a deep learning method for accurate clustering of single cells based on auto-encoder.

BMC bioinformatics
BACKGROUND: Single-cell RNA sequencing (scRNA-seq) has transformed biological research by offering new insights into cellular heterogeneity, developmental processes, and disease mechanisms. As scRNA-seq technology advances, its role in modern biology...

Discovering patient groups in sequential electronic healthcare data using unsupervised representation learning.

BMC medical informatics and decision making
INTRODUCTION: Unsupervised feature learning methods inspired by natural language processing (NLP) models are capable of constructing patient-specific features from longitudinal Electronic Health Records (EHR).

Machine learning reveals the dynamic importance of accessory sequences for outbreak clustering.

mBio
UNLABELLED: Bacterial typing at whole-genome scales is now feasible owing to decreasing costs in high-throughput sequencing and the recent advances in computation. The unprecedented resolution of whole-genome typing is achieved by genotyping the vari...

An unsupervised learning approach for clustering joint trajectories of Alzheimer's disease biomarkers: An application to ADNI Data.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: Current models of Alzheimer's disease (AD) progression assume a common pattern and pathology, oversimplifying the heterogeneity of clinical AD.

Large Language Model Approach for Zero-Shot Information Extraction and Clustering of Japanese Radiology Reports: Algorithm Development and Validation.

JMIR cancer
BACKGROUND: The application of natural language processing in medicine has increased significantly, including tasks such as information extraction and classification. Natural language processing plays a crucial role in structuring free-form radiology...

Colorectal cancer detection with enhanced precision using a hybrid supervised and unsupervised learning approach.

Scientific reports
The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and a...