AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Contrast Media

Showing 191 to 200 of 512 articles

Clear Filters

Correcting synthetic MRI contrast-weighted images using deep learning.

Magnetic resonance imaging
Synthetic magnetic resonance imaging (MRI) offers a scanning paradigm where a fast multi-contrast sequence can be used to estimate underlying quantitative tissue parameter maps, which are then used to synthesize any desirable clinical contrast by ret...

Contrast-Enhanced CT-Based Deep Learning Radiomics Nomogram for the Survival Prediction in Gallbladder Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: An accurate prognostic model is essential for the development of treatment strategies for gallbladder cancer (GBC). This study proposes an integrated model using clinical features, radiomics, and deep learning based on contr...

CEMRI-Based Quantification of Intratumoral Heterogeneity for Predicting Aggressive Characteristics of Hepatocellular Carcinoma Using Habitat Analysis: Comparison and Combination of Deep Learning.

Academic radiology
RATIONALE AND OBJECTIVES: To explore both an intratumoral heterogeneity (ITH) model based on habitat analysis and a deep learning (DL) model based on contrast-enhanced magnetic resonance imaging (CEMRI) and validate its efficiency for predicting micr...

Deep learning for classification of late gadolinium enhancement lesions based on the 16-segment left ventricular model.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: This study aimed to develop and validate a deep learning-based method that allows for segmental analysis of myocardial late gadolinium enhancement (LGE) lesions.

Deep learning approach for discrimination of liver lesions using nine time-phase images of contrast-enhanced ultrasound.

Journal of medical ultrasonics (2001)
PURPOSE: Contrast-enhanced ultrasound (CEUS) shows different enhancement patterns depending on the time after administration of the contrast agent. The aim of this study was to evaluate the diagnostic performance of liver nodule characterization usin...

Toward a deep learning-based magnetic resonance imaging only workflow for postimplant dosimetry in I-125 seed brachytherapy for prostate cancer.

Brachytherapy
BACKGROUND AND PURPOSE: The current standard imaging-technique for creating postplans in seed prostate brachytherapy is computed tomography (CT), that is associated with additional radiation exposure and poor soft tissue contrast. To establish a magn...

Implications of ultrasound-based deep learning model for preoperatively differentiating combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma and intrahepatic cholangiocarcinoma.

Abdominal radiology (New York)
OBJECTIVES: The current study developed an ultrasound-based deep learning model to make preoperative differentiation among hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and combined hepatocellular-cholangiocarcinoma (cHCC-ICC...

Machine Learning-Based MRI Radiogenomics for Evaluation of Response to Induction Chemotherapy in Head and Neck Squamous Cell Carcinoma.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a radiogenomics model integrating clinical data, radiomics-based machine learning (RBML) classifiers, and transcriptomics data for predicting the response to induction chemotherapy (IC) in patients wi...