Invasive coronary angiography remains the gold standard for diagnosing coronary artery disease, which may be complicated by both, patient-specific anatomy and image quality. Deep learning techniques aimed at detecting coronary artery stenoses may fac...
BACKGROUND AND AIMS: Although plaque characterization by intravascular ultrasound (IVUS) is important for risk stratification, frame-by-frame analysis of a whole vascular segment is time-consuming. The aim was to develop IVUS-based algorithms for cla...
Robotic-assisted technology has shown to be promising in coronary and peripheral vascular interventions. Early case reports have also demonstrated its efficacy in neuro-interventions. However, there is no prior report demonstrating use of the robotic...
OBJECTIVE: This study aims to investigate the safety and feasibility of using a deep learning algorithm to calculate computed tomography angiography-based fractional flow reserve (DL-FFRCT) as an alternative to invasive coronary angiography (ICA) in ...
BACKGROUND: Assessment of both coronary artery calcium(CAC) scores and myocardial perfusion imaging(MPI) in patients suspected of coronary artery disease(CAD) provides incremental prognostic information. We used an automated method to determine CAC s...
Non-rigid motion-corrected reconstruction has been proposed to account for the complex motion of the heart in free-breathing 3D coronary magnetic resonance angiography (CMRA). This reconstruction framework requires efficient and accurate estimation o...
Motion compensation can eliminate inconsistencies of respiratory movement during image acquisitions for precise vascular reconstruction in the clinical diagnosis of vascular disease from x-ray angiographic image sequences. In x-ray-based vascular int...