AIMC Topic: Coronary Artery Disease

Clear Filters Showing 391 to 400 of 525 articles

Serum cystatin C and neutrophil gelatinase-associated lipocalin in predicting the severity of coronary artery disease in diabetic patients.

Anatolian journal of cardiology
OBJECTIVE: Cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) are biomarkers of renal functions. We evaluated their roles in predicting the severity of coronary artery disease (CAD).

Creation of a new longitudinal corpus of clinical narratives.

Journal of biomedical informatics
The 2014 i2b2/UTHealth Natural Language Processing (NLP) shared task featured a new longitudinal corpus of 1304 records representing 296 diabetic patients. The corpus contains three cohorts: patients who have a diagnosis of coronary artery disease (C...

A bifurcation identifier for IV-OCT using orthogonal least squares and supervised machine learning.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Intravascular optical coherence tomography (IV-OCT) is an in-vivo imaging modality based on the intravascular introduction of a catheter which provides a view of the inner wall of blood vessels with a spatial resolution of 10-20 μm. Recent studies in...

Fuzzy Rule-Based Classification System for Assessing Coronary Artery Disease.

Computational and mathematical methods in medicine
The aim of this study was to determine the accuracy of fuzzy rule-based classification that could noninvasively predict CAD based on myocardial perfusion scan test and clinical-epidemiological variables. This was a cross-sectional study in which the ...

Comparison of UMLS terminologies to identify risk of heart disease using clinical notes.

Journal of biomedical informatics
The second track of the 2014 i2b2 challenge asked participants to automatically identify risk factors for heart disease among diabetic patients using natural language processing techniques for clinical notes. This paper describes a rule-based system ...

A hybrid model for automatic identification of risk factors for heart disease.

Journal of biomedical informatics
Coronary artery disease (CAD) is the leading cause of death in both the UK and worldwide. The detection of related risk factors and tracking their progress over time is of great importance for early prevention and treatment of CAD. This paper describ...

Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2.

Journal of biomedical informatics
The second track of the 2014 i2b2/UTHealth natural language processing shared task focused on identifying medical risk factors related to Coronary Artery Disease (CAD) in the narratives of longitudinal medical records of diabetic patients. The risk f...

The role of fine-grained annotations in supervised recognition of risk factors for heart disease from EHRs.

Journal of biomedical informatics
This paper describes a supervised machine learning approach for identifying heart disease risk factors in clinical text, and assessing the impact of annotation granularity and quality on the system's ability to recognize these risk factors. We utiliz...

Fast Computation of Hemodynamic Sensitivity to Lumen Segmentation Uncertainty.

IEEE transactions on medical imaging
Patient-specific blood flow modeling combining imaging data and computational fluid dynamics can aid in the assessment of coronary artery disease. Accurate coronary segmentation and realistic physiologic modeling of boundary conditions are important ...

Annotating risk factors for heart disease in clinical narratives for diabetic patients.

Journal of biomedical informatics
The 2014 i2b2/UTHealth natural language processing shared task featured a track focused on identifying risk factors for heart disease (specifically, Cardiac Artery Disease) in clinical narratives. For this track, we used a "light" annotation paradigm...