Archives of gerontology and geriatrics
Jan 15, 2025
OBJECTIVE: Sarcopenia not only affects patients' quality of life but also may exacerbate the pathological processes of coronary artery disease (CAD). This study aimed to identify potential biomarkers to improve the combined diagnosis and treatment of...
The international journal of cardiovascular imaging
Jan 13, 2025
Coronary artery calcification (CAC) is a key marker of coronary artery disease (CAD) but is often underreported in cancer patients undergoing non-gated CT or PET/CT scans. Traditional CAC assessment requires gated CT scans, leading to increased radia...
BACKGROUND: Visual assessment of coronary CT angiography (CCTA) is time-consuming, influenced by reader experience and prone to interobserver variability. This study evaluated a novel algorithm for coronary stenosis quantification (atherosclerosis im...
OBJECTIVES: The use of deep learning models for quantitative measurements on coronary computed tomography angiography (CCTA) may reduce inter-reader variability and increase efficiency in clinical reporting. This study aimed to investigate the diagno...
The international journal of cardiovascular imaging
Jan 9, 2025
The initial evaluation of stenosis during coronary angiography is typically performed by visual assessment. Visual assessment has limited accuracy compared to fractional flow reserve and quantitative coronary angiography, which are more time-consumin...
PURPOSE: We sought to clinically validate a fully automated deep learning (DL) algorithm for coronary artery disease (CAD) detection and classification in a heterogeneous multivendor cardiac computed tomography angiography data set.
Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annea...
Coronary artery disease (CAD) is the main cause of death. It is a complex heart disease that is linked with many risk factors and a variety of symptoms. In the past few years, CAD has experienced a remarkable growth. Prompt risk prediction of CAD wou...
BACKGROUND AND AIMS: The significance of left ventricular mass and chamber volumes from non-contrast computed tomography (CT) for predicting major adverse cardiovascular events (MACE) has not been studied. Our objective was to evaluate the role of ar...
BACKGROUND AND AIMS: An in silico quantitative score of coronary artery disease (ISCAD), built using machine learning and clinical data from electronic health records, has been shown to result in gradations of risk of subclinical atherosclerosis, cor...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.