AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Databases, Genetic

Showing 141 to 150 of 671 articles

Clear Filters

sRNARFTarget: a fast machine-learning-based approach for transcriptome-wide sRNA target prediction.

RNA biology
Bacterial small regulatory RNAs (sRNAs) are key regulators of gene expression in many processes related to adaptive responses. A multitude of sRNAs have been identified in many bacterial species; however, their function has yet to be elucidated. A ke...

Artificial intelligence-aided clinical annotation of a large multi-cancer genomic dataset.

Nature communications
To accelerate cancer research that correlates biomarkers with clinical endpoints, methods are needed to ascertain outcomes from electronic health records at scale. Here, we train deep natural language processing (NLP) models to extract outcomes for p...

The mining and construction of a knowledge base for gene-disease association in mitochondrial diseases.

Scientific reports
Mitochondrial diseases are a group of heterogeneous genetic metabolic diseases caused by mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) gene mutations. Mining the gene-disease association of mitochondrial diseases is helpful for understanding the pa...

Using k-mer embeddings learned from a Skip-gram based neural network for building a cross-species DNA N6-methyladenine site prediction model.

Plant molecular biology
This study used k-mer embeddings as effective feature to identify DNA N6-Methyladenine sites in plant genomes and obtained improved performance without substantial effort in feature extraction, combination and selection. Identification of DNA N6-meth...

Genes and regulatory mechanisms associated with experimentally-induced bovine respiratory disease identified using supervised machine learning methodology.

Scientific reports
Bovine respiratory disease (BRD) is a multifactorial disease involving complex host immune interactions shaped by pathogenic agents and environmental factors. Advancements in RNA sequencing and associated analytical methods are improving our understa...

Machine learning random forest for predicting oncosomatic variant NGS analysis.

Scientific reports
Since 2017, we have used IonTorrent NGS platform in our hospital to diagnose and treat cancer. Analyzing variants at each run requires considerable time, and we are still struggling with some variants that appear correct on the metrics at first, but ...

A Feature Fusion Predictor for RNA Pseudouridine Sites with Particle Swarm Optimizer Based Feature Selection and Ensemble Learning Approach.

Current issues in molecular biology
RNA pseudouridine modification is particularly important in a variety of cellular biological and physiological processes. It plays a significant role in understanding RNA functions, RNA structure stabilization, translation processes, etc. To understa...

Crowdsourcing biocuration: The Community Assessment of Community Annotation with Ontologies (CACAO).

PLoS computational biology
Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying ...

Deep learning allows genome-scale prediction of Michaelis constants from structural features.

PLoS biology
The Michaelis constant KM describes the affinity of an enzyme for a specific substrate and is a central parameter in studies of enzyme kinetics and cellular physiology. As measurements of KM are often difficult and time-consuming, experimental estima...

A GO catalogue of human DNA-binding transcription factors.

Biochimica et biophysica acta. Gene regulatory mechanisms
To control gene transcription, DNA-binding transcription factors recognise specific sequence motifs in gene regulatory regions. A complete and reliable GO annotation of all DNA-binding transcription factors is key to investigating the delicate balanc...