AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Decision Trees

Showing 91 to 100 of 525 articles

Clear Filters

Predicting recurrent gestational diabetes mellitus using artificial intelligence models: a retrospective cohort study.

Archives of gynecology and obstetrics
BACKGROUND: We aimed to develop novel artificial intelligence (AI) models based on early pregnancy features to forecast the likelihood of recurrent gestational diabetes mellitus (GDM) before 14 weeks of gestation in subsequent pregnancies.

Machine learning allows robust classification of visceral fat in women with obesity using common laboratory metrics.

Scientific reports
The excessive accumulation and malfunctioning of visceral adipose tissue (VAT) is a major determinant of increased risk of obesity-related comorbidities. Thus, risk stratification of people living with obesity according to their amount of VAT is of c...

Outcome risk model development for heterogeneity of treatment effect analyses: a comparison of non-parametric machine learning methods and semi-parametric statistical methods.

BMC medical research methodology
BACKGROUND: In randomized clinical trials, treatment effects may vary, and this possibility is referred to as heterogeneity of treatment effect (HTE). One way to quantify HTE is to partition participants into subgroups based on individual's risk of e...

Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer.

Scientific reports
The study aims to investigate the predictive capability of machine learning algorithms for omental metastasis in locally advanced gastric cancer (LAGC) and to compare the performance metrics of various machine learning predictive models. A retrospect...

A hybrid model for the detection of retinal disorders using artificial intelligence techniques.

Biomedical physics & engineering express
The prevalence of vision impairment is increasing at an alarming rate. The goal of the study was to create an automated method that uses optical coherence tomography (OCT) to classify retinal disorders into four categories: choroidal neovascularizati...

Complex artificial intelligence models for energy sustainability in educational buildings.

Scientific reports
Energy consumption of constructed educational facilities significantly impacts economic, social and environment sustainable development. It contributes to approximately 37% of the carbon dioxide emissions associated with energy use and procedures. Th...

Machine learning-based atrial fibrillation detection and onset prediction using QT-dynamicity.

Physiological measurement
. This study examines the value of ventricular repolarization using QT dynamicity for two different types of atrial fibrillation (AF) prediction.. We studied the importance of QT-dynamicity (1) in the detection and (2) the onset prediction (i.e. fore...

Predicting lower limb lymphedema after cervical cancer surgery using artificial neural network and decision tree models.

European journal of oncology nursing : the official journal of European Oncology Nursing Society
PURPOSE: This study aimed to develop and validate accessible artificial neural network and decision tree models to predict the risk of lower limb lymphedema after cervical cancer surgery.

Study of machine learning techniques for outcome assessment of leptospirosis patients.

Scientific reports
Leptospirosis is a global disease that impacts people worldwide, particularly in humid and tropical regions, and is associated with significant socio-economic deficiencies. Its symptoms are often confused with other syndromes, which can compromise cl...

A Data-Driven Approach to Predicting Recreational Activity Participation Using Machine Learning.

Research quarterly for exercise and sport
With the popularity of recreational activities, the study aimed to develop prediction models for recreational activity participation and explore the key factors affecting participation in recreational activities. A total of 12,712 participants, exc...