AIMC Topic: Depressive Disorder, Major

Clear Filters Showing 1 to 10 of 215 articles

Real-world effectiveness of cariprazine in major depressive disorder and bipolar I disorder in the United States.

Journal of medical economics
AIMS: The efficacy of cariprazine for major depressive disorder (MDD) (adjunctive therapy) and bipolar I (BP-I) depression has been demonstrated in clinical trials. This study evaluated the real-world effectiveness of cariprazine in reducing depressi...

Multivariate brain morphological patterns across mood disorders: key roles of frontotemporal and cerebellar areas.

BMJ mental health
BACKGROUND: Differentiating major depressive disorder (MDD) from bipolar disorder (BD) remains a significant clinical challenge, as both disorders exhibit overlapping symptoms but require distinct treatment approaches. Advances in voxel-based morphom...

Clinical, genetic, and sociodemographic predictors of symptom severity after internet-delivered cognitive behavioural therapy for depression and anxiety.

BMC psychiatry
BACKGROUND: Internet-delivered cognitive behavioural therapy (ICBT) is an effective and accessible treatment for mild to moderate depression and anxiety disorders. However, up to 50% of patients do not achieve sufficient symptom relief. Identifying p...

Inflammatory biomarkers as predictors for unlocking antidepressant efficacy: Assessing predictive value and risk stratification in major depressive disorder in a prospective longitudinal study.

Journal of affective disorders
BACKGROUND: Major depressive disorder (MDD) is characterized by significant heterogeneity in treatment response, with inflammation hypothesized to play a role in its pathophysiology. Peripheral inflammatory biomarkers, such as the neutrophil-to-lymph...

Contrastive functional connectivity defines neurophysiology-informed symptom dimensions in major depression.

Cell reports. Medicine
Major depressive disorder (MDD) is highly heterogeneous, posing challenges for effective treatment due to complex interactions between clinical symptoms and neurobiological features. To address this, we apply contrastive principal-component analysis ...

Functional connectome-based predictive modeling of suicidal ideation.

Journal of affective disorders
Suicide represents an egregious threat to society despite major advancements in medicine, in part due to limited knowledge of the biological mechanisms of suicidal behavior. We apply a connectome predictive modeling machine learning approach to ident...

Predicting treatment response in individuals with major depressive disorder using structural MRI-based similarity features.

BMC psychiatry
BACKGROUND: Major Depressive Disorder (MDD) is a prevalent mental health condition with significant societal impact. Structural magnetic resonance imaging (sMRI) and machine learning have shown promise in psychiatry, offering insights into brain abno...

A data-centric and interpretable EEG framework for depression severity grading using SHAP-based insights.

Journal of neuroengineering and rehabilitation
BACKGROUND: Major Depressive Disorder is a leading cause of disability worldwide. An accurate assessment of depression severity is critical for diagnosis, treatment planning, and monitoring, yet current clinical tools are largely subjective, relying ...

Automated depression detection via cloud based EEG analysis with transfer learning and synchrosqueezed wavelet transform.

Scientific reports
Post-COVID-19, depression rates have risen sharply, increasing the need for early diagnosis using electroencephalogram (EEG) and deep learning. To tackle this, we developed a cloud-based computer-aided depression diagnostic (CCADD) system that utiliz...

Exploring potential diagnostic markers and therapeutic targets for type 2 diabetes mellitus with major depressive disorder through bioinformatics and in vivo experiments.

Scientific reports
Type 2 diabetes mellitus (T2DM) and Major depressive disorder (MDD) act as risk factors for each other, and the comorbidity of both significantly increases the all-cause mortality rate. Therefore, studying the diagnosis and treatment of diabetes with...