Diffusion magnetic resonance imaging is an important tool for mapping tissue microstructure and structural connectivity non-invasively in the in vivo human brain. Numerous diffusion signal models are proposed to quantify microstructural properties. N...
BACKGROUND: 7 Tesla (7T) apparent diffusion coefficient (ADC) maps derived from diffusion-weighted imaging (DWI) demonstrate improved image quality and spatial resolution over 3 Tesla (3T) ADC maps. However, 7T magnetic resonance imaging (MRI) curren...
Journal of imaging informatics in medicine
Apr 16, 2024
Is the radiomic approach, utilizing diffusion-weighted imaging (DWI), capable of predicting the various pathological grades of intrahepatic mass-forming cholangiocarcinoma (IMCC)? Furthermore, which model demonstrates superior performance among the d...
PURPOSE: Further acceleration of DWI in diagnostic radiology is desired but challenging mainly due to low SNR in high b-value images and associated bias in quantitative ADC values. Deep learning-based reconstruction and denoising may provide a soluti...
PURPOSE: To assess whether diffusion-weighted imaging (DWI) with Compressed SENSE (CS) and deep learning (DL-CS-DWI) can improve image quality and lesion detection in patients at risk for hepatocellular carcinoma (HCC).
PURPOSE: Posterior circulation ischemic stroke (PCIS) possesses unique features. However, previous studies have primarily or exclusively relied on anterior circulation stroke cases to build machine learning (ML) models for predicting onset time. To d...
PURPOSE: Diffusion magnetic resonance imaging (dMRI) is a widely used non-invasive method for investigating brain anatomical structures. Conventional techniques for estimating fiber orientation distribution (FOD) from dMRI data often neglect voxel-le...
OBJECTIVES: To evaluate the role of combined intravoxel incoherent motion and diffusion kurtosis imaging (IVIM-DKI) and their machine-learning-based texture analysis for the detection and assessment of severity in prostate cancer (PCa).
OBJECTIVES: To investigate the clinical feasibility and image quality of accelerated brain diffusion-weighted imaging (DWI) with deep learning image reconstruction and super resolution.
OBJECTIVES: We aimed to develop machine learning (ML) models based on diffusion- and perfusion-weighted imaging fusion (DP fusion) for identifying stroke within 4.5 h, to compare them with DWI- and/or PWI-based ML models, and to construct an automati...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.