EEG signals exhibit spatio-temporal characteristics due to the neural activity dispersion in space over the brain and the dynamic temporal patterns of electrical activity in neurons. This study tries to effectively utilize the spatio-temporal nature ...
Medical & biological engineering & computing
Jan 30, 2025
With the advancement of artificial intelligence technology, more and more effective methods are being used to identify and classify Electroencephalography (EEG) signals to address challenges in healthcare and brain-computer interface fields. The appl...
PURPOSE: In the context of EEG-based emotion recognition tasks, a conventional strategy involves the extraction of spatial and temporal features, subsequently fused for emotion prediction. However, due to the pronounced individual variability in EEG ...
EEG involves recording electrical activity generated by the brain through electrodes placed on the scalp. Imagined speech classification has emerged as an essential area of research in brain-computer interfaces (BCIs). Despite significant advances, a...
Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications (ASMs), a condition known as pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy remains an intractable issue in the clinic. Its ...
PURPOSE: Advancements in Machine Learning (ML) techniques have revolutionized diagnosing and monitoring epileptic seizures using Electroencephalogram (EEG) signals. This analysis aims to determine the effectiveness of ML techniques in recognizing pat...
Physical and engineering sciences in medicine
Jan 27, 2025
Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment ...
The objective of this study is to assess the potential of a transformer-based deep learning approach applied to event-related brain potentials (ERPs) derived from electroencephalographic (EEG) data. Traditional methods involve averaging the EEG signa...
. Machine learning has enhanced the performance of decoding signals indicating human behaviour. Electroencephalography (EEG) brainwave decoding, as an exemplar indicating neural activity and human thoughts non-invasively, has been helpful in neural a...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.