Working memory, a fundamental cognitive function of the brain, necessitates the evaluation of cognitive load intensity due to limited cognitive resources. Optimizing cognitive load can enhance task performance efficiency by preventing resource waste ...
Diagnosing Alzheimer's disease (AD) through pathological markers is typically costly and invasive. This study aims to find a noninvasive, cost-effective method using portable electroencephalography (EEG) to detect changes in AD-related biomarkers in ...
IEEE transactions on bio-medical engineering
Jan 15, 2025
Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such...
Enhancing motor disability assessment and its imagery classification is a significant concern in contemporary medical practice, necessitating reliable solutions to improve patient outcomes. One promising avenue is the use of brain-computer interfaces...
Major depressive disorder (MDD) is associated with substantial morbidity and mortality, yet its diagnosis and treatment rates remain low due to its diverse and often overlapping clinical manifestations. In this context, electroencephalography (EEG) h...
Neural networks : the official journal of the International Neural Network Society
Jan 8, 2025
In this work, we propose a Fine-grained Hemispheric Asymmetry Network (FG-HANet), an end-to-end deep learning model that leverages hemispheric asymmetry features within 2-Hz narrow frequency bands for accurate and interpretable emotion classification...
BACKGROUND: Mild cognitive impairment (MCI) is recognized as a condition that may increase the risk of developing Alzheimer's disease (AD). Understanding the neural correlates of MCI is crucial for elucidating its pathophysiology and developing effec...
The Hybrid-Brain Computer Interface (BCI) has shown improved performance, especially in classifying multi-class data. Two non-invasive BCI modules are combined to achieve an improved classification which are Electroencephalogram (EEG) and functional ...
Neural networks : the official journal of the International Neural Network Society
Jan 7, 2025
Event-related potentials (ERPs) can reveal brain activity elicited by external stimuli. Innovative methods to decode ERPs could enhance the accuracy of brain-computer interface (BCI) technology and promote the understanding of cognitive processes. Th...
BACKGROUND: Microstate characterization of electroencephalogram (EEG) is a data-driven approach to explore the functional changes and interrelationships of multiple brain networks on a millisecond scale. This study aimed to explore the pathological c...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.