AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Embryonic Development

Showing 1 to 10 of 53 articles

Clear Filters

Use of federated learning to develop an artificial intelligence model predicting usable blastocyst formation from pre-ICSI oocyte images.

Reproductive biomedicine online
RESEARCH QUESTION: Can federated learning be used to develop an artificial intelligence (AI) model for evaluating oocyte competence using two-dimensional images of denuded oocytes in metaphase II prior to intracytoplasmic sperm injection (ICSI)?

A novel deep learning approach to identify embryo morphokinetics in multiple time lapse systems.

Scientific reports
The use of time lapse systems (TLS) in In Vitro Fertilization (IVF) labs to record developing embryos has paved the way for deep-learning based computer vision algorithms to assist embryologists in their morphokinetic evaluation. Today, most of the l...

A deep learning model for predicting blastocyst formation from cleavage-stage human embryos using time-lapse images.

Scientific reports
Efficient prediction of blastocyst formation from early-stage human embryos is imperative for improving the success rates of assisted reproductive technology (ART). Clinics transfer embryos at the blastocyst stage on Day-5 but Day-3 embryo transfer o...

Deep learning-based models for preimplantation mouse and human embryos based on single-cell RNA sequencing.

Nature methods
The rapid growth of single-cell transcriptomic technology has produced an increasing number of datasets for both embryonic development and in vitro pluripotent stem cell-derived models. This avalanche of data surrounding pluripotency and the process ...

Time will tell: time-lapse technology and artificial intelligence to set time cut-offs indicating embryo incompetence.

Human reproduction (Oxford, England)
STUDY QUESTION: Can more reliable time cut-offs of embryo developmental incompetence be generated by combining time-lapse technology (TLT), artificial intelligence, and preimplantation genetics screening for aneuploidy (PGT-A)?

Application of a methodological framework for the development and multicenter validation of reliable artificial intelligence in embryo evaluation.

Reproductive biology and endocrinology : RB&E
BACKGROUND: Artificial intelligence (AI) models analyzing embryo time-lapse images have been developed to predict the likelihood of pregnancy following in vitro fertilization (IVF). However, limited research exists on methods ensuring AI consistency ...

Multi-omics analyses and machine learning prediction of oviductal responses in the presence of gametes and embryos.

eLife
The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a m...

Learning-based inference of longitudinal image changes: Applications in embryo development, wound healing, and aging brain.

Proceedings of the National Academy of Sciences of the United States of America
Longitudinal imaging data are routinely acquired for health studies and patient monitoring. A central goal in longitudinal studies is tracking relevant change over time. Traditional methods remove nuisance variation with custom pipelines to focus on ...

X-scPAE: An explainable deep learning model for embryonic lineage allocation prediction based on single-cell transcriptomics revealing key genes in embryonic cell development.

Computers in biology and medicine
In single-cell transcriptomics research, accurately predicting cell lineage allocation and identifying differences between lineages are crucial for understanding cell differentiation processes and reducing early pregnancy miscarriages in humans. This...

Integrating genetic variation with deep learning provides context for variants impacting transcription factor binding during embryogenesis.

Genome research
Understanding how genetic variation impacts transcription factor (TF) binding remains a major challenge, limiting our ability to model disease-associated variants. Here, we used a highly controlled system of F crosses with extensive genetic diversity...