AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Emergency Service, Hospital

Showing 41 to 50 of 435 articles

Clear Filters

Evaluating LLM-based generative AI tools in emergency triage: A comparative study of ChatGPT Plus, Copilot Pro, and triage nurses.

The American journal of emergency medicine
BACKGROUND: The number of emergency department (ED) visits has been on steady increase globally. Artificial Intelligence (AI) technologies, including Large Language Model (LLMs)-based generative AI models, have shown promise in improving triage accur...

Evaluation of Generative Artificial Intelligence Models in Predicting Pediatric Emergency Severity Index Levels.

Pediatric emergency care
OBJECTIVE: Evaluate the accuracy and reliability of various generative artificial intelligence (AI) models (ChatGPT-3.5, ChatGPT-4.0, T5, Llama-2, Mistral-Large, and Claude-3 Opus) in predicting Emergency Severity Index (ESI) levels for pediatric eme...

A novel interpretable deep learning model for diagnosis in emergency department dyspnoea patients based on complete data from an entire health care system.

PloS one
BACKGROUND: Dyspnoea is one of the emergency department's (ED) most common and deadly chief complaints, but frequently misdiagnosed and mistreated. We aimed to design a diagnostic decision support which classifies dyspnoeic ED visits into acute heart...

Human intention recognition for trauma resuscitation: An interpretable deep learning approach for medical process data.

Journal of biomedical informatics
OBJECTIVE: Trauma resuscitation is the initial evaluation and management of injured patients in the emergency department. This time-critical process requires the simultaneous pursuit of multiple resuscitation goals. Recognizing whether the required g...

Machine-learning based prediction of appendicitis for patients presenting with acute abdominal pain at the emergency department.

World journal of emergency surgery : WJES
BACKGROUND: Acute abdominal pain (AAP) constitutes 5-10% of all emergency department (ED) visits, with appendicitis being a prevalent AAP etiology often necessitating surgical intervention. The variability in AAP symptoms and causes, combined with th...

Enhanced forecasting of emergency department patient arrivals using feature engineering approach and machine learning.

BMC medical informatics and decision making
BACKGROUND: Emergency department (ED) overcrowding is an important problem in many countries. Accurate predictions of ED patient arrivals can help management to better allocate staff and medical resources. In this study, we investigate the use of cal...

Predicting delayed neurological sequelae in patients with carbon monoxide poisoning using machine learning models.

Clinical toxicology (Philadelphia, Pa.)
INTRODUCTION: Delayed neurological sequelae is a common complication following carbon monoxide poisoning, which significantly affects the quality of life of patients with the condition. We aimed to develop a machine learning-based prediction model to...

Predicting emergency department admissions using a machine-learning algorithm: a proof of concept with retrospective study.

BMC emergency medicine
INTRODUCTION: Overcrowding in emergency departments (ED) is a major public health issue, leading to increased workload and exhaustion for the teams, resulting poor outcomes. It seems interesting to be able to predict the admissions of patients in the...

Interpretable machine learning for predicting sepsis risk in emergency triage patients.

Scientific reports
The study aimed to develop and validate a sepsis prediction model using structured electronic medical records (sEMR) and machine learning (ML) methods in emergency triage. The goal was to enhance early sepsis screening by integrating comprehensive tr...

Deep learning model for identifying acute heart failure patients using electrocardiography in the emergency room.

European heart journal. Acute cardiovascular care
AIMS: Acute heart failure (AHF) poses significant diagnostic challenges in the emergency room (ER) because of its varied clinical presentation and limitations of traditional diagnostic methods. This study aimed to develop and evaluate a deep learning...