AIMC Topic: Emergency Service, Hospital

Clear Filters Showing 41 to 50 of 478 articles

The diagnostic performance of automatic B-lines detection for evaluating pulmonary edema in the emergency department among novice point-of-care ultrasound practitioners.

Emergency radiology
PURPOSE: B-lines in lung ultrasound have been a critical clue for detecting pulmonary edema. However, distinguishing B-lines from other artifacts is a challenge, especially for novice point of care ultrasound (POCUS) practitioners. This study aimed t...

Establishing methodological standards for the development of artificial intelligence-based Clinical Decision Support in emergency medicine.

CJEM
OBJECTIVE: Artificial intelligence (AI) offers opportunities for managing the complexities of clinical care in the emergency department (ED), and Clinical Decision Support has been identified as a priority application. However, there is a lack of pub...

Artificial intelligence-based clinical decision support in the emergency department: A scoping review.

Academic emergency medicine : official journal of the Society for Academic Emergency Medicine
OBJECTIVE: Artificial intelligence (AI)-based clinical decision support (CDS) has the potential to augment high-stakes clinical decisions in the emergency department (ED). However, its current usage and translation to implementation remains poorly un...

Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases.

Journal of medical systems
Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human...

Human-centred AI for emergency cardiac care: Evaluating RAPIDx AI with PROLIFERATE_AI.

International journal of medical informatics
BACKGROUND: Chest pain diagnosis in emergency care is hindered by overlapping cardiac and non-cardiac symptoms, causing diagnostic uncertainty. Artificial Intelligence, such as RAPIDx AI, aims to enhance accuracy through clinical and biochemical data...

A pediatric emergency prediction model using natural language process in the pediatric emergency department.

Scientific reports
This study developed a predictive model using deep learning (DL) and natural language processing (NLP) to identify emergency cases in pediatric emergency departments. It analyzed 87,759 pediatric cases from a South Korean tertiary hospital (2012-2021...

Using machine learning to forecast peak health care service demand in real-time during the 2022-23 winter season: A pilot in England, UK.

PloS one
During winter months, there is increased pressure on health care systems in temperature climates due to seasonal increases in respiratory illnesses. Providing real-time short-term forecasts of the demand for health care services helps managers plan t...

AI-Driven Innovations for Early Sepsis Detection by Combining Predictive Accuracy With Blood Count Analysis in an Emergency Setting: Retrospective Study.

Journal of medical Internet research
BACKGROUND: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection...

Classifying Unstructured Text in Electronic Health Records for Mental Health Prediction Models: Large Language Model Evaluation Study.

JMIR medical informatics
BACKGROUND: Prediction models have demonstrated a range of applications across medicine, including using electronic health record (EHR) data to identify hospital readmission and mortality risk. Large language models (LLMs) can transform unstructured ...

Using natural language processing to identify emergency department patients with incidental lung nodules requiring follow-up.

Academic emergency medicine : official journal of the Society for Academic Emergency Medicine
OBJECTIVES: For emergency department (ED) patients, lung cancer may be detected early through incidental lung nodules (ILNs) discovered on chest CTs. However, there are significant errors in the communication and follow-up of incidental findings on E...