AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Exons

Showing 11 to 20 of 27 articles

Clear Filters

Discerning novel splice junctions derived from RNA-seq alignment: a deep learning approach.

BMC genomics
BACKGROUND: Exon splicing is a regulated cellular process in the transcription of protein-coding genes. Technological advancements and cost reductions in RNA sequencing have made quantitative and qualitative assessments of the transcriptome both poss...

Deep-learning augmented RNA-seq analysis of transcript splicing.

Nature methods
A major limitation of RNA sequencing (RNA-seq) analysis of alternative splicing is its reliance on high sequencing coverage. We report DARTS (https://github.com/Xinglab/DARTS), a computational framework that integrates deep-learning-based predictions...

Exon level machine learning analyses elucidate novel candidate miRNA targets in an avian model of fetal alcohol spectrum disorder.

PLoS computational biology
Gestational alcohol exposure causes fetal alcohol spectrum disorder (FASD) and is a prominent cause of neurodevelopmental disability. Whole transcriptome sequencing (RNA-Seq) offer insights into mechanisms underlying FASD, but gene-level analysis pro...

A network-based computational framework to predict and differentiate functions for gene isoforms using exon-level expression data.

Methods (San Diego, Calif.)
MOTIVATION: Alternative splicing makes significant contributions to functional diversity of transcripts and proteins. Many alternatively spliced gene isoforms have been shown to perform specific biological functions under different contexts. In addit...

Machine learning based CRISPR gRNA design for therapeutic exon skipping.

PLoS computational biology
Restoring gene function by the induced skipping of deleterious exons has been shown to be effective for treating genetic disorders. However, many of the clinically successful therapies for exon skipping are transient oligonucleotide-based treatments ...

Prediction of Alzheimer's disease-specific phospholipase c gamma-1 SNV by deep learning-based approach for high-throughput screening.

Proceedings of the National Academy of Sciences of the United States of America
Exon splicing triggered by unpredicted genetic mutation can cause translational variations in neurodegenerative disorders. In this study, we discover Alzheimer's disease (AD)-specific single-nucleotide variants (SNVs) and abnormal exon splicing of ph...

CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores.

Genome medicine
BACKGROUND: Splicing of genomic exons into mRNAs is a critical prerequisite for the accurate synthesis of human proteins. Genetic variants impacting splicing underlie a substantial proportion of genetic disease, but are challenging to identify beyond...

MET Exon 14 Skipping: A Case Study for the Detection of Genetic Variants in Cancer Driver Genes by Deep Learning.

International journal of molecular sciences
BACKGROUND: Disruption of alternative splicing (AS) is frequently observed in cancer and might represent an important signature for tumor progression and therapy. Exon skipping (ES) represents one of the most frequent AS events, and in non-small cell...

A deep learning approach to identify gene targets of a therapeutic for human splicing disorders.

Nature communications
Pre-mRNA splicing is a key controller of human gene expression. Disturbances in splicing due to mutation lead to dysregulated protein expression and contribute to a substantial fraction of human disease. Several classes of splicing modulator compound...